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This paper considers the problem of recovering a group sparse 
signal matrix Y = [y1, · · · , yL] from sparsely corrupted 
measurements M = [A(1)y1, · · · , A(L)yL] + S, where A(i)’s 
are known sensing matrices and S is an unknown sparse 
error matrix. A robust group lasso (RGL) model is proposed 
to recover Y and S through simultaneously minimizing the 
�2,1-norm of Y and the �1-norm of S under the measurement 
constraints. We prove that Y and S can be exactly recovered 
from the RGL model with high probability for a very general 
class of A(i)’s.
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1. Introduction

Consider the problem of recovering a group sparse matrix Y = [y1, · · · , yL] ∈ R
n×L

from sparsely corrupted measurements

M = [A(1)y1, · · · ,A(L)yL] + S, (1)

where M = [m1, · · · , mL] ∈ R
m×L is a measurement matrix, A(i) ∈ R

m×n is the i-th 
sensing matrix, and S = [s1, · · · , sL] ∈ R

m×L is an unknown sparse error matrix. The 
error matrix S is sparse as it has only a small number of nonzero entries. The signal 
matrix Y is group sparse, meaning that Y is sparse and its nonzero entries appear in a 
small number of common rows.

Given M and A(i)’s, our goal is to recover Y and S from the linear measurement 
equation (1). In this paper, we propose to accomplish the recovery task through solving 
the following robust group lasso (RGL) model

min
Y,S

‖Y‖2,1 + λ‖S‖1, (2)

s.t. M = [A(1)y1, · · · ,A(L)yL] + S. (3)

Denoting yij and sij as the (i, j)-th entries of Y and S, respectively, ‖Y‖2,1 �∑n
i=1

√∑L
j=1 y

2
ij is defined as the �2,1-norm of Y and ‖S‖1 �

∑m
i=1
∑L

j=1 |sij | is de-
fined as the �1-norm of S. Minimizing the �2,1-norm term promotes group sparsity of Y
while minimizing the �1-norm term promotes sparsity of S; λ is a nonnegative parameter 
to balance the two terms. We prove that solving the RGL model (2)–(3), which is a 
convex program, enables exact recovery of Y and S with high probability, given that 
A(i)’s satisfy certain conditions.

1.1. From group lasso to robust group lasso

Sparse signal recovery has attracted much research interest in the signal processing 
and optimization communities during the past few years. Various sparsity models have 
been proposed to better exploit the sparse structures of high-dimensional data, such as 
sparsity of a vector [1], [2], group sparsity of vectors [3], and low-rankness of a matrix 
[4]. For more topics related to sparse signal recovery, readers are referred to the recent 
survey paper [5].

In this paper we are interested in the recovery of group sparse (also known as block 
sparse [6] or jointly sparse [7]) signals which finds a variety of applications such as 
direction-of-arrival estimation [8], [9], collaborative spectrum sensing [10–12] and motion 
detection [13]. A signal matrix Y = [y1, · · · , yL] ∈ R

n×L is called k-group sparse if k
rows of Y are nonzero. A measurement matrix M = [m1, · · · , mL] ∈ R

m×L is taken from 
linear projections mi = A(i)yi, i = 1, · · · , L, where A(i) ∈ R

m×n is a sensing matrix. In 
order to recover Y from A(i)’s and M, the standard �2,1-norm minimization formulation 
proposes to solve a convex program
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