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Reduced commutativity of moduli of operators

Pawe�l Pietrzycki

Abstract. In this paper, we investigate the question of when the equations
A∗sAs = (A∗A)s, s ∈ S, where S is a finite set of positive integers, imply
the quasinormality or normality of A. In particular, it is proved that if S =
{p,m,m + p, n, n + p}, where p � 1 and 2 � m < n, then A is quasinormal.
Moreover, if A is invertible and S = {m,n, n + m} with m � n, then A
is normal. The case when S = {m,m + n} and A∗nAn � (A∗A)n is also
discussed.

1. Introduction

The class of bounded quasinormal operators was introduced by A. Brown in [5].
A bounded operator A on a (complex) Hilbert space H is said to be quasinormal if
A(A∗A) = (A∗A)A. Two different definitions of unbounded quasinormal operators
appeared independently in [39] and in [49]. As recently shown in [35, Theorem
3.1], these two definitions are equivalent. Following [49, 154 pp.], we say that a
closed densely defined operator A in H is quasinormal if A commutes with the
spectral measure E of |A|, i.e. E(σ)A ⊂ AE(σ) for all Borel subsets σ of the
nonnegative part of the real line. By [49, Proposition 1], a closed densely defined
operator A in H is quasinormal if and only if U |A| ⊂ |A|U , where A = U |A| is
the polar decomposition of A (see [53, Theorem 7.20]). For more information on
quasinormal operators we refer the reader to [5, 15, 51] for the bounded case, and
to [39, 49, 42, 35, 8, 51] for the unbounded one.

In 1973 M. R. Embry published a very influential paper [19] concerning the
Halmos-Bram criterion for subnormality. In particular, she gave a characterisation
of the class of quasinormal operators in terms of powers of operators. Namely, a
bounded operator A in a Hilbert space is quasinormal if and only if the following
condition holds

(1.1) A∗nAn = (A∗A)n, n ∈ N,

where N stands for the set of all positive integers. This leads to the following
question: is it necessary to assume that the equality in (1.1) holds for all n ∈ N?
To be more precise we ask for which subset S ⊂ N the following system of operator
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