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Abstract

We show a diagonalisation variant of Lindström calculation method. As an
application of this result we calculate the dimension of the affine space of
Negami’s splitting matrices. We do so by writing down an expression for the
Möbius function in term of Möbius algebra identities. As a corollary we get
Lindström’s result in a self contained way. Finally, we calculate the partition
lattice characteristic polynomial via the Negami’s polynomial.
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1. Introduction

Let Γ = {x1, x2, . . . xn} be a meet-semilattice and consider functions fi(x),
x ≤ xi, with values in a commutative ring with unit. Define the matrices
N := (fi(xi ∧ xj)) and M := (μ(xi, xj)) where μ is the Möbius function.

In [Li], it was shown that NM = (aij) is a triangular matrix whose
diagonal elements are:

aii =
n∑

k=1

fi(xk)μ(xk, xi)

In particular, the product of these elements gives the Lindström determinant:

det (fi(xi ∧ xj)) =
n∏

i=1

n∑
j=1

fi(xj)μ(xj, xi)

Now consider a single function f(x), with values in a commutative ring with
unit and define fi as the restriction of f on the segment [0, xi]. In this paper
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