Accepted Manuscript

A note on Möbius algebras and applications

PII: S0024-3795(18)30370-7
DOI: https://doi.org/10.1016/j.laa.2018.07.034
Reference:
LAA 14676

To appear in: Linear Algebra and its Applications

Received date: 1 February 2018
Accepted date: 30 July 2018

Please cite this article in press as: J.M. Burgos, A note on Möbius algebras and applications, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.07.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A note on Möbius algebras and applications

J.M.Burgos
Center for Research and Advanced Studies of the National Polytechnic Institute, Mathematics Department, CINVESTAV, Mexico City, Mexico, 07360.
Email: burgos@math.cinvestav.mx

Abstract

We show a diagonalisation variant of Lindström calculation method. As an application of this result we calculate the dimension of the affine space of Negami's splitting matrices. We do so by writing down an expression for the Möbius function in term of Möbius algebra identities. As a corollary we get Lindström's result in a self contained way. Finally, we calculate the partition lattice characteristic polynomial via the Negami's polynomial.

Keywords: Möbius algebra, Möbius function, Negami's polynomial 2010 MSC: 15A54, 15A09, 15A21, 06B99, 05C31

1. Introduction

Let $\Gamma=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be a meet-semilattice and consider functions $f_{i}(x)$, $x \leq x_{i}$, with values in a commutative ring with unit. Define the matrices $N:=\left(f_{i}\left(x_{i} \wedge x_{j}\right)\right)$ and $M:=\left(\mu\left(x_{i}, x_{j}\right)\right)$ where μ is the Möbius function.

In [Li], it was shown that $N M=\left(a_{i j}\right)$ is a triangular matrix whose diagonal elements are:

$$
a_{i i}=\sum_{k=1}^{n} f_{i}\left(x_{k}\right) \mu\left(x_{k}, x_{i}\right)
$$

In particular, the product of these elements gives the Lindström determinant:

$$
\operatorname{det}\left(f_{i}\left(x_{i} \wedge x_{j}\right)\right)=\prod_{i=1}^{n} \sum_{j=1}^{n} f_{i}\left(x_{j}\right) \mu\left(x_{j}, x_{i}\right)
$$

Now consider a single function $f(x)$, with values in a commutative ring with unit and define f_{i} as the restriction of f on the segment $\left[\mathbf{0}, x_{i}\right]$. In this paper

https://daneshyari.com/en/article/8897672

Download Persian Version:
https://daneshyari.com/article/8897672

Daneshyari.com

