

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Chip-firing groups of iterated cones

Morgan V. Brown a, Jackson S. Morrow b,*, David Zureick-Brown b

^a Department of Mathematics, University of Miami, Coral Gables, FL 33146 USA
 ^b Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

ARTICLE INFO

Article history: Received 14 September 2017 Accepted 21 June 2018 Available online 25 June 2018 Submitted by R. Brualdi

MSC: primary 05C50 secondary 05C25

Keywords: Graph Laplacian Critical group Abelian sandpile Chip-firing Matrix-tree theorem

ABSTRACT

Let Γ be a finite graph and let Γ_n be the "nth cone over Γ " (i.e., the join of Γ and the complete graph K_n). We study the asymptotic structure of the chip-firing group $\operatorname{Pic}^0(\Gamma_n)$.

Published by Elsevier Inc.

1. Introduction

The *chip-firing* groups $\operatorname{Pic}^0(\Gamma) \subset \operatorname{Pic}(\Gamma)$ of a finite graph Γ are classical objects of combinatorial study. Baker [2] developed the connection between line bundles on a semistable arithmetic curve \mathscr{X} and $\operatorname{Pic}^0(\Gamma)$, where Γ is the dual graph of the special fiber of \mathscr{X} , and with various coauthors [6,7] discovered that the cornerstone theorems satis-

^{*} Corresponding author.

E-mail addresses: mvbrown@math.miami.edu (M.V. Brown), jmorrow4692@gmail.com (J.S. Morrow), dzb@mathcs.emory.edu (D. Zureick-Brown).

fied by algebraic curves (e.g., Riemann–Roch and Clifford's theorem) admit non-trivial analogous theorems for graphs.

The technology transfer flows both ways; chip-firing (and variants and tools from tropical geometry) have emerged as a central tool in recent results across several sub-fields of algebraic/arithmetic geometry and number theory, including the maximal rank conjecture for quadrics [13], the Gieseker–Petri theorem [12], the Brill–Noether theorem [10], and the uniform boundedness conjecture [14]; see [3] for an extensive survey.

An interest in the *computational* properties of $\operatorname{Pic}^0(\Gamma)$ has recently emerged. Several authors, including [5,11,15], have worked to compute $\operatorname{Pic}^0(\Gamma)$ (or, failing that, $|\operatorname{Pic}^0(\Gamma)|$, which is equal to the number of spanning trees of Γ [8, Theorem 6.2]) for various families of graphs; we refer the reader to [1, pg. 1155] for nearly a complete list of authors contributing to this area.

Our question of interest is the behavior of the chip-firing group of the nth cone Γ_n over Γ , where Γ_n is defined as the join of Γ with the complete graph K_n . Recall, the join of two graphs Γ_1 and Γ_2 is a graph obtained from Γ_1 and Γ_2 by joining each vertex of Γ_1 to all vertices of Γ_2 . In [1], the authors interpret the chip-firing group of the nth cone of the Cartesian product of graphs as a function of the chip-firing group of the cone of their factors. As a consequence, they completely describe the chip-firing group of the nth cone over the d-dimensional hypercube.

Our main theorem concerns the chip-firing group of the nth cone over a fixed graph.

Theorem A. Let Γ be a graph on $k \geq 1$ vertices. Let $n \geq 1$ be an integer, and let Γ_n be the nth cone over Γ defined above. Then there is a short exact sequence of abelian groups

$$0 \to (\mathbb{Z}/(n+k)\mathbb{Z})^{n-1} \to \operatorname{Pic}^0(\Gamma_n) \to H_n \to 0$$

where the order of H_n is $|P_{\Gamma}(-n)|$ and $P_{\Gamma}(x)$ is the characteristic polynomial of the rational Laplacian operator.

In particular, this immediately gives an exact formula for the number of spanning trees of Γ_n .

Corollary B. Let Γ be a graph on $k \geq 1$ vertices. Let $n \geq 1$ be an integer, and let Γ_n be the nth cone over Γ defined above. There is a subgroup of $\operatorname{Pic}^0(\Gamma_n)$ isomorphic to $(\mathbb{Z}/(n+k)\mathbb{Z})^{n-1}$, and

$$|\operatorname{Pic}^{0}(\Gamma_{n})| = (n+k)^{n-1}|P_{\Gamma}(-n)|$$

where $P_{\Gamma}(x)$ is the characteristic polynomial of the rational Laplacian operator.

Remark 1.1. In a previous version of this paper, the authors erroneously claimed that this exact sequence was split for odd values of n + k, and conjectured it was split in general. We are very grateful to Gopal Goel for pointing out this error and providing a counter

Download English Version:

https://daneshyari.com/en/article/8897682

Download Persian Version:

https://daneshyari.com/article/8897682

Daneshyari.com