Graphs with real algebraic co-rank at most two

Carlos A. Alfaro
Banco de México, Mexico City, Mexico

A R T I C L E I N F O

Article history:

Received 15 February 2018
Accepted 3 July 2018
Available online 5 July 2018
Submitted by R. Brualdi

MSC:

05C25
05C50
05E99
13P15
15A03
68W30
Keywords:
Critical ideals
Forbidden induced subgraph
Minimum rank
Laplacian matrix
Zero forcing number

Abstract

Recently, there have been found relations between the algebraic co-rank and the zero forcing number along with the minimum rank. We continue on this direction by giving a characterization of the graphs with real algebraic co-rank at most 2 . This implies that for any graph with minimum rank at most 3 , its minimum rank is bounded from above by its real algebraic co-rank. This sheds some light on the conjecture that the real minimum rank is bounded from above by the real algebraic co-rank.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Given a simple graph G and a set of indeterminates $X_{G}=\left\{x_{u}: u \in V(G)\right\}$, the generalized Laplacian matrix $L\left(G, X_{G}\right)$ of G is the matrix whose $u v$-entry is given by

$$
L\left(G, X_{G}\right)_{u v}= \begin{cases}x_{u} & \text { if } u=v \\ -m_{u v} & \text { otherwise }\end{cases}
$$

[^0]where $m_{u v}$ is the number of the edges between vertices u and v. Moreover, if $\mathcal{R}\left[X_{G}\right]$ is the polynomial ring over a commutative ring \mathcal{R} with unity in the variables X_{G}, then the critical ideals of G are the determinantal ideals given by
$$
I_{i}^{\mathcal{R}}\left(G, X_{G}\right)=\left\langle\operatorname{minors}_{i}\left(L\left(G, X_{G}\right)\right)\right\rangle \subseteq \mathcal{R}\left[X_{G}\right] \text { for all } 1 \leq i \leq n
$$
where n is the number of vertices of G and $\operatorname{minors}_{i}\left(L\left(G, X_{G}\right)\right)$ is the set of the determinants of the $i \times i$ submatrices of $L\left(G, X_{G}\right)$.

An ideal is said to be trivial if it is equal to $\langle 1\rangle(=\mathcal{R}[X])$. The algebraic co-rank $\gamma_{\mathcal{R}}(G)$ of G is the maximum integer i for which $I_{i}^{\mathcal{R}}\left(G, X_{G}\right)$ is trivial. For simplicity, we might refer to the real algebraic co-rank of the graph G to $\gamma_{\mathbb{R}}(G)$. Note that $I_{n}^{\mathcal{R}}\left(G, X_{G}\right)=\left\langle\operatorname{det} L\left(G, X_{G}\right)\right\rangle$ is always non-trivial, and if d_{G} denotes the degree vector, then $I_{n}^{\mathcal{R}}\left(G, d_{G}\right)=\langle 0\rangle$.

Critical ideals were defined in [13] and some interesting properties were found. For instance, it was proven that if H is an induced subgraph of G, then $I_{i}^{\mathcal{R}}\left(H, X_{H}\right) \subseteq$ $I_{i}^{\mathcal{R}}\left(G, X_{G}\right)$ for all $i \leq|V(H)|$. Thus $\gamma_{\mathcal{R}}(H) \leq \gamma_{\mathcal{R}}(G)$. Initially, critical ideals were defined as a generalization of the critical group (a.k.a. sandpile group), since an evaluation of $I_{i}^{\mathbb{Z}}\left(G, X_{G}\right)$ at $X_{G}=d_{G}$ gives us the greater common divisor of the i-minors of the Laplacian matrix of the graph, which can be used for computing the invariant factors of the Smith normal form of the Laplacian matrix of the graph. See [6, Section 4] or [13, Section 3.3] for the details on the relation between critical ideals and the critical group. Also in $[3,15]$ can be found an account of the main results on sandpile group, and in [16] can be found a survey on the Smith normal form in combinatorics done by Stanley.

In [2], it was explored its relation with the zero forcing number and the minimum rank. We continue on this direction. For this, we recall these well-known concepts.

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, the player can pick a set of vertices B and color them blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If x is a blue vertex and y is the only white neighbor of x, then y is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue. The zero forcing number $Z(G)$ is the minimum cardinality of a zero forcing set. In the following, $\mathrm{mz}(G)=|V(G)|-Z(G)$.

For a graph G on n vertices, the family $\mathcal{S}_{\mathcal{R}}(G)$ collects all $n \times n$ symmetric matrices with entries in the ring \mathcal{R}, whose i, j-entry $(i \neq j)$ is nonzero whenever i is adjacent to j and zero otherwise. Note that the diagonal entries can be any element in the ring \mathcal{R}. The minimum rank $\operatorname{mr}_{\mathcal{R}}(G)$ of G is the smallest possible rank among matrices in $\mathcal{S}_{\mathcal{R}}(G)$. Here we follow [12, Definition 1] and define the rank of a matrix over a commutative ring with unity as the largest k such that there is a nonzero $k \times k$ minor that is not a zero divisor. In the case of $\mathcal{R}=\mathbb{Z}$, the rank over \mathbb{Z} is the same as the rank over \mathbb{R}.

In [7], it was proved that $\mathrm{mz}(G) \leq \operatorname{mr}_{\mathcal{R}}(G)$ for any field \mathcal{R}. And in [2], it was proved that $\mathrm{mz}(G) \leq \gamma_{\mathcal{R}}(G)$ for any commutative ring \mathcal{R} with unity. However, the relation between $\operatorname{mr}_{\mathcal{R}}(G)$ and $\gamma_{\mathcal{R}}(G)$ remains not completely understood.

https://daneshyari.com/en/article/8897685

Download Persian Version:

https://daneshyari.com/article/8897685

Daneshyari.com

[^0]: E-mail addresses: alfaromontufar@gmail.com, carlos.alfaro@banxico.org.mx.

