

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Graphs with real algebraic co-rank at most two

Carlos A. Alfaro

Banco de México, Mexico City, Mexico

LINEAR

lications

ARTICLE INFO

Article history: Received 15 February 2018 Accepted 3 July 2018 Available online 5 July 2018 Submitted by R. Brualdi

 $\begin{array}{c} MSC:\\ 05C25\\ 05C50\\ 05E99\\ 13P15\\ 15A03\\ 68W30 \end{array}$

Keywords: Critical ideals Forbidden induced subgraph Minimum rank Laplacian matrix Zero forcing number

АВЅТ КАСТ

Recently, there have been found relations between the algebraic co-rank and the zero forcing number along with the minimum rank. We continue on this direction by giving a characterization of the graphs with real algebraic co-rank at most 2. This implies that for any graph with minimum rank at most 3, its minimum rank is bounded from above by its real algebraic co-rank. This sheds some light on the conjecture that the real minimum rank is bounded from above by the real algebraic co-rank.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Given a simple graph G and a set of indeterminates $X_G = \{x_u : u \in V(G)\}$, the generalized Laplacian matrix $L(G, X_G)$ of G is the matrix whose uv-entry is given by

$$L(G, X_G)_{uv} = \begin{cases} x_u & \text{if } u = v, \\ -m_{uv} & \text{otherwise}, \end{cases}$$

https://doi.org/10.1016/j.laa.2018.07.002 0024-3795/© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: alfaromontufar@gmail.com, carlos.alfaro@banxico.org.mx.

where m_{uv} is the number of the edges between vertices u and v. Moreover, if $\mathcal{R}[X_G]$ is the polynomial ring over a commutative ring \mathcal{R} with unity in the variables X_G , then the *critical ideals* of G are the determinantal ideals given by

$$I_i^{\mathcal{R}}(G, X_G) = \langle \operatorname{minors}_i(L(G, X_G)) \rangle \subseteq \mathcal{R}[X_G] \text{ for all } 1 \leq i \leq n,$$

where n is the number of vertices of G and minors_i($L(G, X_G)$) is the set of the determinants of the $i \times i$ submatrices of $L(G, X_G)$.

An ideal is said to be *trivial* if it is equal to $\langle 1 \rangle (= \mathcal{R}[X])$. The algebraic co-rank $\gamma_{\mathcal{R}}(G)$ of G is the maximum integer i for which $I_i^{\mathcal{R}}(G, X_G)$ is trivial. For simplicity, we might refer to the *real algebraic co-rank* of the graph G to $\gamma_{\mathbb{R}}(G)$. Note that $I_n^{\mathcal{R}}(G, X_G) = \langle \det L(G, X_G) \rangle$ is always non-trivial, and if d_G denotes the degree vector, then $I_n^{\mathcal{R}}(G, d_G) = \langle 0 \rangle$.

Critical ideals were defined in [13] and some interesting properties were found. For instance, it was proven that if H is an induced subgraph of G, then $I_i^{\mathcal{R}}(H, X_H) \subseteq$ $I_i^{\mathcal{R}}(G, X_G)$ for all $i \leq |V(H)|$. Thus $\gamma_{\mathcal{R}}(H) \leq \gamma_{\mathcal{R}}(G)$. Initially, critical ideals were defined as a generalization of the critical group (*a.k.a.* sandpile group), since an evaluation of $I_i^{\mathbb{Z}}(G, X_G)$ at $X_G = d_G$ gives us the greater common divisor of the *i*-minors of the Laplacian matrix of the graph, which can be used for computing the invariant factors of the Smith normal form of the Laplacian matrix of the graph. See [6, Section 4] or [13, Section 3.3] for the details on the relation between critical ideals and the critical group. Also in [3,15] can be found an account of the main results on sandpile group, and in [16] can be found a survey on the Smith normal form in combinatorics done by Stanley.

In [2], it was explored its relation with the zero forcing number and the minimum rank. We continue on this direction. For this, we recall these well-known concepts.

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, the player can pick a set of vertices B and color them blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If x is a blue vertex and y is the only white neighbor of x, then yis forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue. The zero forcing number Z(G) is the minimum cardinality of a zero forcing set. In the following, mz(G) = |V(G)| - Z(G).

For a graph G on n vertices, the family $S_{\mathcal{R}}(G)$ collects all $n \times n$ symmetric matrices with entries in the ring \mathcal{R} , whose i, j-entry $(i \neq j)$ is nonzero whenever i is adjacent to j and zero otherwise. Note that the diagonal entries can be any element in the ring \mathcal{R} . The minimum rank $\operatorname{mr}_{\mathcal{R}}(G)$ of G is the smallest possible rank among matrices in $S_{\mathcal{R}}(G)$. Here we follow [12, Definition 1] and define the rank of a matrix over a commutative ring with unity as the largest k such that there is a nonzero $k \times k$ minor that is not a zero divisor. In the case of $\mathcal{R} = \mathbb{Z}$, the rank over \mathbb{Z} is the same as the rank over \mathbb{R} .

In [7], it was proved that $m_{\mathcal{R}}(G) \leq m_{\mathcal{R}}(G)$ for any field \mathcal{R} . And in [2], it was proved that $m_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$ for any commutative ring \mathcal{R} with unity. However, the relation between $m_{\mathcal{R}}(G)$ and $\gamma_{\mathcal{R}}(G)$ remains not completely understood. Download English Version:

https://daneshyari.com/en/article/8897685

Download Persian Version:

https://daneshyari.com/article/8897685

Daneshyari.com