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Abstract

We study hyperbolic polynomials with nice symmetry and express them as the determinant of a
Hermitian matrix with special structure. The goal of this paper is to answer a question posed by
Chien and Nakazato in 2015. By properly modifying a determinantal representation construction
of Dixon (1902), we show for every hyperbolic polynomial of degree n invariant under the cyclic
group of order n there exists a determinantal representation admitted via some cyclic weighted shift
matrix. Moreover, if the polynomial is invariant under the action of the dihedral group of order n,
the associated cyclic weighted shift matrix is unitarily equivalent to one with real entries.
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1. Introduction

Let f be a real homogeneous polynomial of degree n in three variables t, x, y, so VC(f) is a
projective plane curve. A determinantal representation of f is an expression

f = det(tM0 + xM1 + yM2),

where M0, M1, M2 are n × n matrices. We set M = M(t, x, y) = tM0 + xM1 + yM2 and refer to M
as the determinantal representation of f . The representation is called real symmetric or Hermitian
if M is of the respective form. Real symmetric and Hermitian determinantal representations have
been systematically studied by Dubrovin [5] and Vinnikov [18, 19] in the late 1980’s and early
1990’s. Definite Hermitian determinantal representations are those for which there exists a point
e = (e0, e1, e2) ∈ R

3 such that the matrix M(e) = e0M0+e1M1+M2e2 is positive definite. Since the
eigenvalues of a Hermitian matrix are real, every real line passing through e meets the hypersurface
VC(f) in only real points. Polynomials with this property are called hyperbolic and are intimately
linked with convex optimization, see for example [1], [7] and [14].

Definition 1.1. A homogeneous polynomial f ∈ R[t, x, y]n is called hyperbolic with respect to a
point e ∈ R

3 if f(e) �= 0 and for every z ∈ R
3, all roots of the univariate polynomial f(e+λz) ∈ R[λ]

are real.
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