Some spectral norm inequalities on Hadamard products of nonnegative matrices ${ }^{*}$

Yun Zhang
School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China

A R T I C L E I N F O

Article history:

Received 19 May 2018
Accepted 8 July 2018
Available online xxxx
Submitted by X. Zhan

MSC:

15A18
15A60
15A69
15B48
Keywords:
Hadamard product
Nonnegative matrices
Spectral radius
Spectral norm

A B S T R A C T

Let A and B be nonnegative square matrices of the same order. Denote by $\|\cdot\|$ and $\rho(\cdot)$ the spectral norm and the spectral radius respectively. We prove the following inequalities:

$$
\begin{gathered}
\|A \circ B\| \leq\|A \circ A\|^{\frac{1}{2}}\|B \circ B\|^{\frac{1}{2}} \\
\|A \circ B\| \leq \rho^{\frac{1}{2}}\left(A^{T} B \circ B^{T} A\right) \leq \rho^{\frac{1}{2}}\left(A^{T} B \circ A^{T} B\right) \leq \rho\left(A^{T} B\right),
\end{gathered}
$$

where o denotes the Hadamard product. This interpolates the inequality

$$
\|A \circ B\| \leq \rho\left(A^{T} B\right)
$$

due to Huang. Some spectral norm inequalities for an arbitrarily finite number of nonnegative square matrices are also obtained, which refine some other results of Huang.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction and preliminaries

Let M_{n} denote the set of complex matrices of order n. For matrices $A=\left(a_{i j}\right), B=$ $\left(b_{i j}\right) \in M_{n}$, we denote by $\rho(A)$ the spectral radius of A, by $A \circ B=\left(a_{i j} b_{i j}\right)$ the Hadamard product of A and B. The notation $A \leq B$ means that $B-A$ is entrywise nonnegative. For $T \in M_{n}$, the singular values of T, denoted by $s_{1}(T) \geq s_{2}(T) \geq \cdots \geq s_{n}(T)$, are the eigenvalues of the positive semidefinite matrix $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. It follows that the singular values of a normal matrix are just the moduli of its eigenvalues. Denote by $\|A\|$ the spectral norm of $A \in M_{n}$, which equals the largest singular value.

Zhan [11] conjectured that $\rho(A \circ B) \leq \rho(A B)$ for nonnegative matrices $A, B \in M_{n}$. This conjecture was confirmed by Audenaert in [1] by proving

$$
\begin{equation*}
\rho(A \circ B) \leq \rho^{\frac{1}{2}}((A \circ A)(B \circ B)) \leq \rho(A B) \tag{1.1}
\end{equation*}
$$

Using the fact that the Hadamard product of two matrices is a principal submatrix of the Kronecker product, Horn and Zhang proved [4] the inequalities

$$
\begin{equation*}
\rho(A \circ B) \leq \rho^{\frac{1}{2}}(A B \circ B A) \leq \rho(A B) \tag{1.2}
\end{equation*}
$$

Huang [5] generalized the inequality $\rho(A \circ B) \leq \rho(A B)$ to an arbitrarily finite number of nonnegative matrices:

$$
\begin{equation*}
\rho\left(A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right) \leq \rho\left(A_{1} A_{2} \cdots A_{k}\right) \tag{1.3}
\end{equation*}
$$

Over the years, various generalizations on the spectral radius of Hadamard products of nonnegative matrices have been considered in the literature; e.g., [2,6-10].

The aim of this paper is to present some inequalities on the spectral norm of the Hadamard product of nonnegative matrices. The main results are the following
(1) Let $A, B \in M_{n}$ be nonnegative matrices. Then

$$
\|A \circ B\| \leq\|A \circ A\|^{\frac{1}{2}}\|B \circ B\|^{\frac{1}{2}}
$$

Denote by S_{k} the set of all permutations of $1,2, \ldots, k$.
(2) Let $A_{1}, A_{2}, \ldots, A_{k} \in M_{n}$ be nonnegative matrices. Then for any $\tau, \gamma \in S_{k}$

$$
\left\|A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right\| \leq \rho^{\frac{1}{2}}\left(A_{\tau(1)} A_{\gamma(1)}^{T} \circ A_{\tau(2)} A_{\gamma(2)}^{T} \circ \cdots \circ A_{\tau(k)} A_{\gamma(k)}^{T}\right)
$$

If k is even, then for any $\tau \in S_{k}$,

$$
\left\|A_{1} \circ A_{2} \circ \cdots \circ A_{k}\right\| \leq \rho\left(A_{\tau(1)}^{T} A_{\tau(2)} \circ A_{\tau(3)}^{T} A_{\tau(4)} \circ \cdots \circ A_{\tau(k-1)}^{T} A_{\tau(k)}\right)
$$

By specifying suitable permutations in (2), it can generalize some useful inequalities, which can refine some results due to Huang [5]. As an application, it implies that for nonnegative matrices $A, B \in M_{n}$,

https://daneshyari.com/en/article/8897689

Download Persian Version:

https://daneshyari.com/article/8897689

Daneshyari.com

[^0]: ${ }^{4}$ S Supported by Anhui Provincial Natural Science Foundation (1708085QA05), The Key Program in the Youth Elite Support Plan in Universities of Anhui Province (gxyqZD2018047) and the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2016B001).

 E-mail address: zhangyunmaths@163.com.

