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1. Introduction

Let m, n be positive integers and M, the algebra of all n x n matrices over the field F.
If A = [a;;] € M,, and B € M,, then the Kronecker product A ® B is an mn X mn

matrix
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From the block matrix form it is obvious that B can be determined from matrices A and
A ® B provided that A is nonzero. Methods for determining B from A and A ® B have
been described in the literature (see [1] and references therein). Let 0,, € M,, denote the
n X n zero matrix.

Definition 1.1. [1, Definition 2.2] A right Kronecker quotient is an operation @, where
C @ B € M,, when C € M,,,, and B € M, \ {0,,}, which obeys

(A B)oB=A
for all A € M,,, B € M, \ {0,} and m,n € N.

From the above, a definition of the left Kronecker quotient © can be self-explanatory.
In the remainder of the paper we only consider the right Kronecker quotient since
analogous results for the left Kronecker quotient are straightforward. Note also that
B@B=(1®B)® B =1 for all non-zero B € M,,.

Let us introduce the historical background of Kronecker quotients. First, in 1993, Van
Loan and Pitsianis [2] described how to find A (for given C and B) which minimizes
the Frobenius norm ||C' — (A ® B)|| . In particular, they provided an example of a Kro-
necker quotient. More than ten years later, in 2005, Leopardi [3] introduced the notion
of a Kronecker quotient © as a binary operation which is an inverse operation to the
Kronecker matrix product (see the definition above) and considered some of its alge-
braic properties. Although these two Kronecker quotients were formulated differently,
they share many algebraic properties. The reader is referred to the manuscript [1] for a
comprehensive account of the subject.

For matrices A € M,,, B € M, let AT and tr(A) denote the transpose of A and
the trace of A, respectively, and let try(A ® B) denote the partial trace over M, in
M = My, @ My, ie., tra(A® B) = tr(B)A. If C € M,,,, then the partial Frobenius
product e of C' and B is given by

C e B = try((I,, ® BT)C).

In [1], Hardy introduced a uniform Kronecker quotient @ as follows. A Kronecker
quotient @ is linear, if (B # 0,)

(l) (01+02>®B201@B+CQ@BfOI‘aH01,02Gan,BGMn;
(ii) (A\C)@ B=X(C @ B) for all C € My, B € M,, A € F.
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