
Accepted Manuscript

On the sum of Laplacian eigenvalues of a signed graph

Dijian Wang, Yaoping Hou

PII: S0024-3795(18)30289-1
DOI: https://doi.org/10.1016/j.laa.2018.06.005
Reference: LAA 14613

To appear in: Linear Algebra and its Applications

Received date: 8 November 2017
Accepted date: 2 June 2018

Please cite this article in press as: D. Wang, Y. Hou, On the sum of Laplacian eigenvalues of a signed graph, Linear Algebra
Appl. (2018), https://doi.org/10.1016/j.laa.2018.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.laa.2018.06.005


On the sum of Laplacian eigenvalues of a signed graph

Dijian Wang, Yaoping Hou ∗

Key Laboratory of High Performance Computing and Stochastic Information Processing

Department of Mathematics, Hunan Normal University

Changsha, Hunan 410081, China

Abstract

For a signed graph Γ, let e(Γ) denote the number of edges and Sk(Γ) denote
the sum of the k largest eigenvalues of the Laplacian matrix of Γ. We conjecture
that for any signed graph Γ with n vertices, Sk(Γ) ≤ e(Γ) +

(
k+1
2

)
+ 1 holds for

k = 1, . . . , n. We prove the conjecture for any signed graph when k = 2, and prove
that this conjecture is true for unicyclic and bicyclic signed graphs.
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1 Introduction

In this paper, all graphs are simple (loopless and without multiple edges). The vertex

set and edge set of the graph G will be denoted by V (G) and E(G), respectively. A

signed graph (or sigraph for short) Γ = (G, σ) consists of an unsigned graph G = (V,E)

and a sign function σ : E(G) → {+,−}, and G is its underlying graph, while σ is its

sign function (or signature). Furthermore, it is also to interpret the signs as the integers

{+1,−1}. Hence, signed graphs sometimes are treated as weighted graphs, whose (edge)
weights is 1 or −1. An edge e is positive (negative) if σ(e) = + (resp. σ(e) = −). If all
edges in Γ are positive (negative), then Γ is denoted by (G,+) (resp. (G,−)).

Actually, each concept defined for the underlying graph can be transferred with signed

graphs. For example, the degree of a vertex v in G is also its degree in Γ. Furthermore,

if some subgraph of the underlying graph is observed, then the sign function for the

subgraph is the restriction of the previous one. Thus, if v ∈ V (G), then Γ − v denotes

the signed subgraph whose underlying graph is G− v and its signature is the restriction

from E(G) to E(G − v). If U ⊆ V (G) then Γ[U ] or G(U) denotes the (signed) induced

subgraph arising from U , while Γ − U = Γ[V (G)\U ]. Sometimes we also write Γ − Γ[U ]
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