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A square matrix A is called diagonally singularizable if 
|A −S| ≤ I holds for some singular matrix S (I is the identity 
matrix). The paper brings several necessary and/or sufficient 
conditions for diagonal singularizability and demonstrates 
another specific features, namely existence of diagonal-
singularizability-preserving operations and a theorem of 
symmetric alternative.
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1. Introduction

In [1], the authors introduced the following concept: a matrix A ∈ R
n×n is called 

diagonally singularizable if there exists a singular matrix S satisfying

|A− S| ≤ I,
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where I denotes the identity matrix and absolute value and inequality are understood 
entrywise. This term was used in [1] for formulating a nontrivial assertion (see Theorem 5
below): for each nonsingular matrix A, either A or A−1 is diagonally singularizable. It 
was just this remarkable property that prompted this author to investigate the concept 
of diagonal singularizability in more detail, thus giving rise to the present paper which 
brings several necessary and/or sufficient conditions for diagonal singularizability and 
demonstrates another specific features, namely existence of diagonal-singularizability-
preserving operations and a theorem of symmetric alternative.

We use the following notation. �(A) stands for the spectral radius of A and λmin(A)
denotes the minimum eigenvalue of a symmetric matrix A. Let us recall that by the 
Courant–Fischer theorem [2],

λmin(A) = min
x�=0

xTAx

xTx
.

Continuity of the minimum eigenvalue follows from the Wielandt–Hoffman theorem (see 
[2]):

|λmin(A) − λmin(B)| ≤ ‖A−B‖F

holds for any two symmetric matrices A, B ∈ R
n×n, where we use the Frobenius matrix 

norm ‖C‖F = (
∑

ij c
2
ij)1/2. An interval matrix is a set of matrices of the form

[A−D, A + D] = {C | |A− C| ≤ D }

with D ≥ 0; it is called singular if it contains a singular matrix. For a t ∈ R
n, Tt denotes 

the diagonal matrix with diagonal vector t. {−1, 1}n is the set of all ±1-vectors in Rn

(there are 2n of them). Let us note that |AB| ≤ |A||B| whenever the matrices A, B can 
be multiplied.

2. Necessary and sufficient conditions

First, we have several necessary and sufficient conditions for diagonal singularizability.

Theorem 1. For a matrix A ∈ R
n×n, the following assertions are equivalent:

(i) A is diagonally singularizable,
(ii) [A − I, A + I] is singular,
(iii) |Ax| ≤ |x| for some x �= 0,
(iv) det(A) det(A − Ty) ≤ 0 for some y ∈ {−1, 1}n,
(v) A − τTy is singular for some τ ∈ [0, 1] and y ∈ {−1, 1}n,
(vi) |Ax| = τ |x| for some τ ∈ [0, 1] and x �= 0.
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