

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Equiangular tight frames that contain regular simplices

LINEAR ALGEBRA and its

Applications

Matthew Fickus $^{\rm a,*},$ John Jasper $^{\rm b},$ Emily J. King $^{\rm c},$ Dustin G. Mixon $^{\rm d}$

 ^a Department of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, United States of America
 ^b Department of Mathematics and Statistics, South Dakota State University,

Brookings, SD 57007, United States of America ^c Department of Mathematics and Computer Science, University of Bremen,

Bremen, 28359, Germany

^d Department of Mathematics, Ohio State University, Columbus, OH 43210, United States of America

ARTICLE INFO

Article history: Received 19 November 2017 Accepted 2 June 2018 Available online 13 June 2018 Submitted by H. Rauhut

MSC: 42C15

Keywords: Equiangular Tight Frame

ABSTRACT

An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. A regular simplex is a special type of ETF in which the number of vectors is one more than the dimension of the space they span. In this paper, we consider ETFs that contain a regular simplex, that is, have the property that a subset of its vectors forms a regular simplex. As we explain, such ETFs are characterized as those that achieve equality in a certain well-known bound from the theory of compressed sensing. We then consider the socalled binder of such an ETF, namely the set of all regular simplices that it contains. We provide a new algorithm for computing this binder in terms of products of entries of the ETF's Gram matrix. In certain circumstances, we show this binder can be used to produce a particularly elegant Naimark complement of the corresponding ETF. Other times, an ETF is a disjoint union of regular simplices, and we show this leads to a certain type of optimal packing of subspaces known as an equichordal tight fusion frame. We conclude by considering

* Corresponding author.

E-mail address: Matthew.Fickus@gmail.com (M. Fickus).

the extent to which these ideas can be applied to numerous known constructions of ETFs, including harmonic ETFs. Published by Elsevier Inc.

1. Introduction

Let *n* and *d* be positive integers with $n \ge d$, and let \mathbb{F} be either \mathbb{R} or \mathbb{C} . The *coherence* of a sequence $\{\varphi_j\}_{j=1}^n$ of *n* nonzero equal norm vectors in a *d*-dimensional Hilbert space \mathbb{H} over \mathbb{F} is

$$\mu := \max_{j \neq j'} \frac{|\langle \varphi_j, \varphi_{j'} \rangle|}{\|\varphi_j\| \|\varphi_{j'}\|}.$$
(1)

In the real case, each vector φ_j spans a line and μ is the cosine of the smallest angle between any pair of these lines. Our work here is motivated by two well-known bounds involving μ . The first of these is the *Welch bound* [62], which is a lower bound on μ whenever $n \geq d$:

$$\mu \ge \left[\frac{n-d}{d(n-1)}\right]^{\frac{1}{2}}.$$
(2)

The second bound arises in compressed sensing [28,18], and gives a lower bound on the *spark* of $\{\varphi_j\}_{j=1}^n$, namely the smallest number of these vectors that are linearly dependent:

$$\operatorname{spark}\{\varphi_j\}_{j=1}^n \ge \frac{1}{\mu} + 1. \tag{3}$$

It is well known that $\{\varphi_j\}_{j=1}^n$ achieves equality in the Welch bound (2) if and only if it is an equiangular tight frame (ETF) for \mathbb{H} , that is, if and only if the value of $|\langle \varphi_j, \varphi_{j'} \rangle|$ is constant over all $j \neq j'$ (equiangularity) and there exists a > 0 such that $\sum_{j=1}^n |\langle \varphi_j, \mathbf{x} \rangle|^2 = a ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{H}$ (tightness) [57]. This paper focuses on ETFs that achieve equality in (3). As we shall see, this happens precisely when the ETF contains a regular simplex, namely when for some positive integer s there are s+1 of the φ_j vectors that form an ETF for an s-dimensional subspace of \mathbb{H} . Of the few infinite families of ETFs that are known, a remarkably large proportion of them have this property. This raises the following fundamental question: in general, to what extent do ETFs contain regular simplices? Our results here are some first steps towards an answer.

ETFs arise in several applications including waveform design for wireless communication [57], compressed sensing [5,8], quantum information theory [64,54] and algebraic coding theory [45]. They also seem to be rare [34]. With the exception of orthonormal bases and regular simplices, every known infinite family of ETFs involves some type of combinatorial design. Real ETFs are equivalent to a subclass of strongly regular graphs (SRGs) [50,55,43,61], and such graphs have been actively studied for decades [16,17,24]. Download English Version:

https://daneshyari.com/en/article/8897717

Download Persian Version:

https://daneshyari.com/article/8897717

Daneshyari.com