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An equiangular tight frame (ETF) is a type of optimal packing 
of lines in Euclidean space. A regular simplex is a special 
type of ETF in which the number of vectors is one more 
than the dimension of the space they span. In this paper, 
we consider ETFs that contain a regular simplex, that is, 
have the property that a subset of its vectors forms a regular 
simplex. As we explain, such ETFs are characterized as those 
that achieve equality in a certain well-known bound from 
the theory of compressed sensing. We then consider the so-
called binder of such an ETF, namely the set of all regular 
simplices that it contains. We provide a new algorithm for 
computing this binder in terms of products of entries of the 
ETF’s Gram matrix. In certain circumstances, we show this 
binder can be used to produce a particularly elegant Naimark 
complement of the corresponding ETF. Other times, an ETF 
is a disjoint union of regular simplices, and we show this leads 
to a certain type of optimal packing of subspaces known as 
an equichordal tight fusion frame. We conclude by considering 
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the extent to which these ideas can be applied to numerous 
known constructions of ETFs, including harmonic ETFs.

Published by Elsevier Inc.

1. Introduction

Let n and d be positive integers with n ≥ d, and let F be either R or C. The coherence
of a sequence {ϕj}nj=1 of n nonzero equal norm vectors in a d-dimensional Hilbert space H
over F is

μ := max
j �=j′

|〈ϕj ,ϕj′ 〉|
‖ϕj‖‖ϕj′‖

. (1)

In the real case, each vector ϕj spans a line and μ is the cosine of the smallest angle 
between any pair of these lines. Our work here is motivated by two well-known bounds 
involving μ. The first of these is the Welch bound [62], which is a lower bound on μ
whenever n ≥ d:

μ ≥
[

n−d
d(n−1)

] 1
2 . (2)

The second bound arises in compressed sensing [28,18], and gives a lower bound on 
the spark of {ϕj}nj=1, namely the smallest number of these vectors that are linearly 
dependent:

spark{ϕj}nj=1 ≥ 1
μ + 1. (3)

It is well known that {ϕj}nj=1 achieves equality in the Welch bound (2) if and only 
if it is an equiangular tight frame (ETF) for H, that is, if and only if the value of 
|〈ϕj ,ϕj′〉| is constant over all j �= j′ (equiangularity) and there exists a > 0 such that ∑n

j=1 |〈ϕj ,x〉|2 = a‖x‖2 for all x ∈ H (tightness) [57]. This paper focuses on ETFs that 
achieve equality in (3). As we shall see, this happens precisely when the ETF contains a 
regular simplex, namely when for some positive integer s there are s +1 of the ϕj vectors 
that form an ETF for an s-dimensional subspace of H. Of the few infinite families of 
ETFs that are known, a remarkably large proportion of them have this property. This 
raises the following fundamental question: in general, to what extent do ETFs contain 
regular simplices? Our results here are some first steps towards an answer.

ETFs arise in several applications including waveform design for wireless communi-
cation [57], compressed sensing [5,8], quantum information theory [64,54] and algebraic 
coding theory [45]. They also seem to be rare [34]. With the exception of orthonormal 
bases and regular simplices, every known infinite family of ETFs involves some type of 
combinatorial design. Real ETFs are equivalent to a subclass of strongly regular graphs 
(SRGs) [50,55,43,61], and such graphs have been actively studied for decades [16,17,24]. 
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