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Abstract

For a graph G, let λ2(G) denote its second smallest Laplacian eigenvalue. It was

conjectured that λ2(G) + λ2(G) ≥ 1, where G is the complement of G. In this paper,

it is shown that max
{
λ2(G), λ2(G)

} ≥ 2
5 .
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1 Introduction

All graphs considered in this paper are simple (no loops and no multiple edges). If G is

a graph and v ∈ V (G), we denote by NG(v) the set of vertices adjacent to v. We denote

the complementary graph of G by G.

The adjacency matrix A(G) of G is the matrix whose (u, v)-entry is equal to 1 if

uv ∈ E(G) and 0 otherwise. If D(G) denotes the diagonal matrix of vertex degrees, then

the Laplacian of the graph G is defined as L(G) = D(G)−A(G). We denote the Laplacian

eigenvalues of G by

0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G).

The second smallest eigenvalue λ2(G) is also called the algebraic connectivity of G and is

an important indicator related to various properties of the graph. It is well-known that
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