Accepted Manuscript

The algebraic connectivity of a graph and its complement

PII:	S0024-3795(18)30299-4
DOI:	https://doi.org/10.1016/j.laa.2018.06.015
Reference:	LAA 14623

To appear in: Linear Algebra and its Applications

Received date: 24 November 2017
Accepted date: 13 June 2018

Please cite this article in press as: B. Afshari et al., The algebraic connectivity of a graph and its complement, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.06.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The Algebraic Connectivity of a Graph and its Complement

B. Afshari ${ }^{\text {a }}$, S. Akbari ${ }^{\text {b }}$, M.J. Moghaddamzadeh ${ }^{\text {b }}$, B. Mohar ${ }^{\text {c } \dagger \ddagger}$
${ }^{\text {a }}$ School of Computer Science, Institute for Research in Fundamental Sciences,
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, ${ }^{\text {c Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6 }}$

Abstract

For a graph G, let $\lambda_{2}(G)$ denote its second smallest Laplacian eigenvalue. It was conjectured that $\lambda_{2}(G)+\lambda_{2}(\bar{G}) \geq 1$, where \bar{G} is the complement of G. In this paper, it is shown that $\max \left\{\lambda_{2}(G), \lambda_{2}(\bar{G})\right\} \geq \frac{2}{5}$.

AMS Classification: 05C50
Keywords: Laplacian eigenvalues of graphs, Laplacian spread

1 Introduction

All graphs considered in this paper are simple (no loops and no multiple edges). If G is a graph and $v \in V(G)$, we denote by $N_{G}(v)$ the set of vertices adjacent to v. We denote the complementary graph of G by \bar{G}.

The adjacency matrix $A(G)$ of G is the matrix whose (u, v)-entry is equal to 1 if $u v \in E(G)$ and 0 otherwise. If $D(G)$ denotes the diagonal matrix of vertex degrees, then the Laplacian of the graph G is defined as $L(G)=D(G)-A(G)$. We denote the Laplacian eigenvalues of G by

$$
0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)
$$

The second smallest eigenvalue $\lambda_{2}(G)$ is also called the algebraic connectivity of G and is an important indicator related to various properties of the graph. It is well-known that

[^0]
https://daneshyari.com/en/article/8897719

Download Persian Version:

https://daneshyari.com/article/8897719

Daneshyari.com

[^0]: *The research of the second author was partly funded by Iran National Science Foundation (INSF) under the contract No. 96004167.
 ${ }^{\dagger}$ B.M. was supported in part by the NSERC Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia).
 ${ }^{\ddagger}$ On leave from IMFM \& FMF, Department of Mathematics, University of Ljubljana.

