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Abstract

In this paper we aim to investigate the concept of numerical range and maximal nu-
merical range relative to a positive operator of a d-tuple of bounded linear operators on
a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is
proved that they are convex for d = 1, this generalizes the well known Toeplitz-Hausdorff
Theorem [24, 16] and Stampi’s result [23]. Moreover, under additional hypotheses, we
show that these sets are convex for d ≥ 2.
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1 Introduction and Preliminaries
Let H be a non trivial complex Hilbert space with inner product 〈· | ·〉 and associated norm
‖ · ‖. Let B(H) denote the algebra of bounded linear operators on H. For T ∈ B(H), the
classical numerical range of T was introduced by Toeplitz in [24] as

W (T ) := {〈Tx | x〉; x ∈ H with ‖x‖ = 1}.

By the Toeplitz-Hausdorff Theorem, W (T ) is convex. This theorem has many proofs, a recent
one is due to C.K. Li [18]. A short proof covering unbounded operators acting on a pre-Hilbert
space was given by K. Gustafson [14]. Other basic properties of W (T ) can be found in [5].
There is a rich variety of generalizations of the notion of the numerical range. For example in
[13], W. Givens has introduced the generalized numerical range of a matrix M ∈ Mn(C) by
considering the generalized inner product induced by a positive definite hermitian matrix N .
It is defined by

FN(M) := {x∗NMx; x ∈ C
n, x∗Nx = 1} .

The concept of the classical numerical range was generalized to the joint numerical range by
A.T. Dash [10] as follows.

Definition 1.1. ([10]) Let T = (T1, · · · , Td) ∈ B(H)d be a d-tuple of operators. The joint
numerical range of T is the subset of Cd defined by

JtW (T) = {(〈T1x | x〉, · · · , 〈Tdx | x〉) ; x ∈ H, ‖x‖ = 1}.
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