

A congruence on the semiring of normal tropical matrices

Baomin Yu^{a,b,1}, Xianzhong Zhao^{a,*,2}, Lingli Zeng^{a,3}

^a School of Mathematics, Northwest University, Xi'an, Shaanxi, 710127, PR China
^b School of Mathematics and Physics, Weinan Normal University, Weinan, Shaanxi, 714099, PR China

ARTICLE INFO

Article history: Received 27 February 2018 Accepted 22 June 2018 Available online xxxx Submitted by R. Brualdi

MSC: 15A80 16Y60

Keywords: Tropical algebra Normal matrix Congruence Kleene star Idempotent matrix

ABSTRACT

We introduce and study a congruence ρ on the normal tropical matrix semiring \mathbf{M}_n^N , which is relevant to the Kleene stars of normal tropical matrices. We prove that this congruence is a bisemilattice congruence and give an exact description of each ρ -class. In particular, we show that the ρ -class $E\rho$ is an interval when E is a strongly regular normal tropical matrix. We also present a method using Floyd–Warshall algorithm to compute the greatest lower bound of $E\rho$ in such case.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

https://doi.org/10.1016/j.laa.2018.06.027 0024-3795/© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: bmyuu@hotmail.com (B.M. Yu), zhaoxz@nwu.edu.cn (X.Z. Zhao), zengll929@163.net (L.L. Zeng).

¹ The first author is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2017JM1044), the Science and Technique Foundation of Weinan city (2016KYJ-3-7) and National Natural Science Foundation of China (11501419).

 $^{^{2}}$ The second author is supported by National Natural Science Foundation of China (11571278).

 $^{^{3}}$ The third author is supported by National Natural Science Foundation of China (11701449).

1. Introduction and preliminaries

By a *semiring* we mean a nonempty set S with two binary operations \oplus (addition) and \otimes (multiplication) such that

- (S, \oplus) is a commutative semigroup;
- (S, \otimes) is a semigroup;
- \otimes distributes over \oplus .

A semiring S is said to be commutative if $a \otimes b = b \otimes a$ for all $a, b \in S$. An element e (ε , respectively) of a semiring S is called a neutral element for multiplication (a neutral element for addition, respectively) if $a \otimes e = e \otimes a = a$ ($a \oplus \varepsilon = a$, respectively) for all $a \in S$. A semiring with a multiplicative neutral element e and an additive neutral element ε is called an *idempotent semiring* (also called *dioid*, see [1,11,19]) if $a \oplus a = a$ for all $a \in S$. Notice that some authors (see [9,10] for instance) require that the additive neutral element ε is absorbing. However we do not require our semirings and idempotent semirings to satisfy this property. If we define the binary relation \leq on an idempotent semiring S by

$$a \le b \Longleftrightarrow a \oplus b = b, \tag{1.1}$$

then it is a partial order relation (see [1]). Also, it is compatible with \oplus and \otimes , that is, for any $a, b, c \in S$,

$$a \le b \Rightarrow a \oplus c \le b \oplus c, \ a \otimes c \le b \otimes c \text{ and } c \otimes a \le c \otimes b.$$
 (1.2)

The tropical semiring $\overline{\mathbb{R}}$ is a commutative idempotent semiring (that is, a commutative dioid). It is the set $\mathbb{R} \cup \{-\infty\}$ equipped with the operations of tropical addition $a \oplus b = \max(a, b)$ and tropical multiplication $a \otimes b = a+b$, where 0 and $-\infty$ are the multiplicative neutral element and the additive neutral element, respectively. Note that the partial order \leq on $\overline{\mathbb{R}}$ defined by (1.1) is the usual order of real numbers. Tropical algebra (also called max-plus algebra) is the algebra developed over the tropical semiring. It provides an attractive way to describe and solve nonlinear problems appearing in areas such as combinatorial optimization [3], control theory [5], geometry [8,15], automata theory [21], etc. Many such problems are naturally expressed using systems of tropical linear equations and inequalities, and so tropical matrices have been intensively studied (see [1,3-5,12,15,16,21]).

As in conventional linear algebra, we can extend the operations \oplus and \otimes on the tropical semiring $\overline{\mathbb{R}}$ to matrices. That is, if $A = (a_{ij}), B = (b_{ij})$ and $C = (c_{ij})$ are matrices over $\overline{\mathbb{R}}$ of compatible sizes, then we write $C = A \oplus B$ if $c_{ij} = a_{ij} \oplus b_{ij}$ for all i, j and $C = A \otimes B$ if $c_{ij} = \bigoplus_k a_{ik} \otimes b_{kj}$ for all i, j. With respect to the tropical matrix addition \oplus and the tropical matrix multiplication \otimes , the set M_n of all $n \times n$ tropical

Download English Version:

https://daneshyari.com/en/article/8897729

Download Persian Version:

https://daneshyari.com/article/8897729

Daneshyari.com