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P- and P0-matrix classes have wide applications in mathemat-
ical analysis, linear and nonlinear complementarity problems, 
etc., since they contain many important special matrices, such 
as positive (semi-)definite matrices, M-matrices, diagonally 
dominant matrices, etc. By modifying the existing definitions 
of P- and P0-tensors that work only for even order tensors, 
in this paper, we propose a homogeneous formula for the def-
inition of P- and P0-tensors. The proposed P- and P0-tensor 
classes coincide the existing ones of even orders and include 
many important structured tensors of odd orders. We show 
that many checkable classes of structured tensors, such as the 
nonsingular M-tensors, the nonsingular H-tensors with posi-
tive diagonal entries, the strictly diagonally dominant tensors 
with positive diagonal entries, are P-tensors under the new 
definition, regardless of whether the order is even or odd. 
In the odd order case, our definition of P0-tensors, to some 
extent, can be regarded as an extension of positive semi-
definite (PSD) tensors. The theoretical applications of P- and 
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P0-tensors under the new definition to tensor complementar-
ity problems and spectral hypergraph theory are also studied.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The P-matrix, first introduced by Fiedler and Pták [1], is an important type of a spe-
cial matrix. It is a square matrix all of whose determinants of its principal submatrices 
are positive. The class of P-matrices contains many notable matrices as its special cases, 
such as positive definite matrices, nonsingular M-matrices, nonsingular completely pos-
itive matrices, strictly diagonally dominant matrices, etc. In a certain sense, P-matrices 
and P0-matrices can be regarded as extensions of positive definite symmetric matrices 
and positive semi-definite symmetric matrices to the nonsymmetric case, since a sym-
metric matrix is positive definite (or positive semidefinite respectively) if and only if it 
is a P-matrix (or P0-matrix respectively). Besides its significance in matrix analysis, the 
P-matrix is also important for linear complementarity problems (see, e.g., [2–5]). Given 
a matrix A and a vector q, a linear complementarity problem LCP(q, A) is to find a 
vector x such that

x ≥ 0, Ax + q ≥ 0, 〈x, Ax + q〉 = 0, (1)

where 〈·, ·〉 denotes the inner product of two vectors. The corresponding LCP(q, A) has 
a unique solution for any vector q if and only if the matrix A is a P-matrix. P-matrices 
are also widely applied in nonlinear complementarity problems. For instance, Qi, Sun, 
and Zhou [6] employed some properties of P-matrices to investigate the convergence of 
smoothing Newton methods for nonlinear complementarity problems.

With an emerging interest in multi-linear algebra concentrated on the higher-order 
tensors, more structured matrices have been generalized to higher-order cases. Here 
the tensor is referred to a hyper-matrix, or a multi-way array. In 2015, Song and Qi 
[7] extended P- and P0-matrices to P- and P0-tensors. In the even-order case, it was 
shown that a symmetric tensor is positive definite (PD) (positive semi-definite (PSD) 
respectively) if and only if it is a P-tensor (P0-tensor respectively). The P- and P0-tensors 
were shown to be applicable in the tensor complementarity problem ([7–10]) which is 
referred to finding some vector x ∈ R

n satisfying

x ≥ 0, Axm−1 + q ≥ 0, 〈x,Axm−1 + q〉 = 0, (2)

where A = (ai1···im) is an mth-order n-dimensional tensor,

Axm−1 :=

⎛⎝ n∑
i2,...,im=1

aii2···imxi2 · · ·xim

⎞⎠ ∈ R
n
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