Another orthogonal matrix, revisited

Michael Mackenzie
Becker College, 56 William Street, Worcester MA, 01609, United States of America

A R T I C L E I N F O

Article history:

Received 7 August 2017
Accepted 24 June 2018
Available online 28 June 2018
Submitted by R. Brualdi

$M S C$:

15B10
65F30

Keywords:
Unitary
k-Hessenberg
Matrix completion
Quasiseparable
Semiseparable

A B S T R A C T
A 2006 paper by Parlett and Barszcz [4] proposed the following problem: Given an unit vector q, compute the orthogonal Hessenberg matrix A with first column q. In complex form, this translates to completing the unitary Hessenberg matrix U with first column q. Looking at the matrix $I-q q^{*}$ in the special form $I-q q^{*}=L D^{2} L^{*}$, where L is $n \times(n-1)$ and lower triangular with 1's on its main diagonal and $D^{2}=\operatorname{diag}\left(\mu_{1}^{2}, \ldots, \mu_{n-1}^{2}\right)$ is positive definite, Parlett observed that for $i>j$ the entries of $\tilde{L}=L D$ can be written as $\tilde{l}_{i j}=-q_{i} \bar{q}_{j} \mu_{j} / \rho_{j}$, where \bar{q}_{j} denotes the complex conjugate of q_{j} and $\rho_{i}=\sum_{j=i+1}^{n}\left|q_{j}\right|^{2}, \rho_{n}=0$, and $\mu_{i}=\sqrt{\rho_{i} / \rho_{i-1}}$, for $i=1, \ldots, n$. Furthermore, one solution to this problem is $U=[q \tilde{L}]$. Section 1 provides some background, as well as details on the derivation of Parlett's formula. Section 2 contains the main result, where Parlett's method is extended to "tall thin" matrices as suggested by Parlett in his original paper. In other words, using a repeated application of Parlett's method, a solution is given to the problem of completing the unitary k-Hessenberg matrix given its first k columns.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In 1971, Householder and Fox [1] introduced a method for computing an orthonormal basis for the range of a projection. Using a Cholesky decomposition on a symmetric idempotent matrix A produced $A=L L^{T}$, where the columns of the lower triangular matrix L form said basis. Moler and Stewart [3] performed an error analysis on the Householder-Fox algorithm in 1978, where it was shown that in most cases reasonable results can be expected. However, the 2006 paper by Parlett and Barszcz [4] included a numerical experiment by Kahan in which the Householder-Fox method performed poorly. Using the Cholesky factorization technique on $I-q q^{T}$ with the normalized version of $q=\left(1,1 / 8,1 / 8^{2}, \ldots, 1 / 8^{15}\right)$ produced L such that $\left\|L^{T} L-I\right\| \approx 1$. The source of this poor result is simply cancellation due to subtraction. Parlett suggested a method in which subtraction can be avoided. To begin, recall that if A_{k} is the $k \times k$ leading principal submatrix of $A=L U$, then $\operatorname{det}\left(A_{k}\right)=u_{11} \cdots u_{k k}$ and the k th pivot is given by

$$
u_{k k}=\left\{\begin{array}{lr}
\operatorname{det}\left(A_{1}\right)=a_{11} & \text { for } k=1 \tag{1}\\
\operatorname{det}\left(A_{k}\right) / \operatorname{det}\left(A_{k-1}\right) & \text { for } k=2, \ldots, n
\end{array}\right.
$$

Let $p_{0}=1$ and p_{1}, \ldots, p_{n-1} denote the leading principal minors of $I-q q^{T}$, where $p_{n}=\operatorname{det}\left(I-q q^{T}\right)=0$. Sylvester's determinant theorem states that if A is $n \times m$ and B is $m \times n$, then $\operatorname{det}\left(I_{n}-A B\right)=\operatorname{det}\left(I_{m}-B A\right.$), where I_{n} and I_{m} denote the $n \times n$ and $m \times m$ identity matrices respectively. Thus, for the leading principal minors, we have the formula

$$
\begin{align*}
p_{j} & =\operatorname{det}\left(1-\left[\begin{array}{lll}
q_{1} & \cdots & q_{j}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{j}
\end{array}\right]\right) \\
& =1-\sum_{i=1}^{j} q_{i}^{2} \tag{2}
\end{align*}
$$

Parlett however used the simple observation that since

$$
\sum_{i=1}^{n} q_{i}^{2}=1
$$

it follows that

$$
p_{j}=1-\sum_{i=1}^{j} q_{i}^{2}=\sum_{k=j+1}^{n} q_{k}^{2}
$$

or defined recursively

https://daneshyari.com/en/article/8897731

Download Persian Version:
https://daneshyari.com/article/8897731

Daneshyari.com

[^0]: E-mail address: mcm10009@gmail.com.

