

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A poset Φ_n whose maximal chains are in bijection with the $n \times n$ alternating sign matrices

LINEAR

olications

Paul Terwilliger

Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706-1388, USA

ARTICLE INFO

Article history: Received 18 October 2017 Accepted 25 May 2018 Available online 28 May 2018 Submitted by R. Brualdi

MSC: primary 05B20 secondary 05E18, 15B35, 15B36

Keywords: Alternating sign matrix Maximal chain Dihedral group

ABSTRACT

For an integer $n \geq 1$, we display a poset Φ_n whose maximal chains are in bijection with the $n \times n$ alternating sign matrices. The Hasse diagram $\widehat{\Phi}_n$ is obtained from the *n*-cube by adding some edges. We show that the dihedral group D_{2n} acts on $\widehat{\Phi}_n$ as a group of automorphisms.

© 2018 Published by Elsevier Inc.

1. Introduction

We will be discussing a type of square matrix called an alternating sign matrix. These matrices were introduced in [5], and subsequently linked to many other topics in Combinatorics; see [1] for an overview. In [4], the alternating sign matrices are linked to partially ordered sets in the following way. For $n \ge 1$, the set of $n \times n$ alternating sign matrices becomes a distributive lattice, which is the MacNeille completion of the Bruhat order on the symmetric group S_n . For more discussion of this see [3], [6, p. 598], [7, p. 2].

 $\label{eq:https://doi.org/10.1016/j.laa.2018.05.024} 0024-3795 \end{tabular} 0218 \ \mbox{Published by Elsevier Inc.}$

E-mail address: terwilli@math.wisc.edu.

In the present paper we link alternating sign matrices to partially ordered sets in a different way. For $n \ge 1$, we display a partially ordered set Φ_n , whose maximal chains are in bijection with the $n \times n$ alternating sign matrices. We will also discuss the symmetries of Φ_n . Before describing our results in more detail, we recall a few terms.

Consider a finite poset, with vertex set X and partial order \leq . For vertices x, y write x < y whenever $x \leq y$ and $x \neq y$. A vertex x is maximal (resp. minimal) whenever there does not exist a vertex y such that x < y (resp. y < x). For vertices x, y we say that y covers x whenever x < y and there does not exist a vertex z such that x < z < y. For an integer $r \geq 0$, a chain of length r is a sequence of vertices $x_0 < x_1 < \cdots < x_r$. This chain is called maximal whenever (i) x_r is maximal; (ii) x_0 is minimal; (iii) x_i covers x, y are adjacent in \hat{X} whenever one of x, y covers the other one.

For the rest of this paper, fix an integer $n \ge 1$. An $n \times n$ matrix is said to have order n. We recall the *n*-cube. This is an undirected graph, whose vertex set consists of the sequences (a_1, a_2, \ldots, a_n) such that $a_i \in \{0, 1\}$ for $1 \le i \le n$. Vertices x, y of the *n*-cube are adjacent whenever they differ in exactly one coordinate. The *n*-cube is often called a hypercube, or a binary Hamming graph.

We now describe our results in more detail. Consider the poset whose vertex set consists of the subsets of $\{1, 2, ..., n\}$; the partial order is \subseteq . For this poset, the Hasse diagram is isomorphic to the *n*-cube and the maximal chains are in bijection with the permutation matrices of order n [2, p 142]. We augment this partial order by adding some edges to the Hasse diagram, and denote the resulting poset by Φ_n . We show that the maximal chains in Φ_n are in bijection with the alternating sign matrices of order n. We show that the dihedral group D_{2n} acts on $\widehat{\Phi}_n$ as a group of automorphisms.

2. Alternating sign matrices

In this section we give some definitions and elementary facts concerning alternating sign matrices.

Definition 2.1. A sequence $(\sigma_0, \sigma_1, \ldots, \sigma_n)$ is *constrained* whenever

(i) $\sigma_i \in \{0, 1\}$ for $0 \le i \le n$; (ii) $\sigma_0 = 0$ and $\sigma_n = 1$.

Let Con_n denote the set of constrained sequences.

Given a constrained sequence $(\sigma_0, \sigma_1, \ldots, \sigma_n)$ define $\alpha_i = \sigma_i - \sigma_{i-1}$ for $1 \leq i \leq n$. For example, if $(\sigma_0, \sigma_1, \ldots, \sigma_n) = (0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1)$ then the sequence $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is

$$(0, 1, 0, 0, -1, 1, 0, -1, 0, 1).$$

Download English Version:

https://daneshyari.com/en/article/8897745

Download Persian Version:

https://daneshyari.com/article/8897745

Daneshyari.com