Accepted Manuscript

Degree-based energies of graphs

PII: S0024-3795(18)30267-2
DOI:
https://doi.org/10.1016/j.laa.2018.05.027
Reference:
LAA 14599

To appear in: Linear Algebra and its Applications

Received date: 21 December 2017
Accepted date: 27 May 2018

Please cite this article in press as: K.Ch. Das et al., Degree-based energies of graphs, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.05.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Degree-based energies of graphs

Kinkar Ch. Das
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Ivan Gutman
Faculty of Science, University of Kragujevac, P.O.Box 60, 34000 Kragujevac, Serbia Igor Milovanović, Emina Milovanović*
Faculty of Electronic Engineering, A. Medvedeva 14, P.O.Box 73, 18000 Niš, Serbia
Boris Furtula
Faculty of Science, University of Kragujevac, P.O.Box 60, 34000 Kragujevac, Serbia

Abstract

Let $G=(V, E)$ be a simple graph of order n and size m, with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, without isolated vertices and sequence of vertex degrees $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta>0, d_{i}=d_{G}\left(v_{i}\right)$. If the vertices v_{i} and v_{j} are adjacent, we denote it as $v_{i} v_{j} \in E(G)$ or $i \sim j$. With $T I$ we denote a topological index that can be represented as $T I=T I(G)=\sum_{i \sim j} \mathcal{F}\left(d_{i}, d_{j}\right)$, where \mathcal{F} is an appropriately chosen function with the property $\mathcal{F}(x, y)=\mathcal{F}(y, x)$. A general extended adjacency matrix $A=\left(a_{i j}\right)$ of G is defined as $a_{i j}=\mathcal{F}\left(d_{i}, d_{j}\right)$ if the vertices v_{i} and v_{j} are adjacent, and $a_{i j}=0$ otherwise. Denote by f_{i}, $i=1,2, \ldots, n$ the eigenvalues of A. The "energy" of the general extended adjacency matrix is defined as $\mathcal{E}_{T I}=\mathcal{E}_{T I}(G)=\sum_{i=1}^{n}\left|f_{i}\right|$. Lower and upper bounds on $\mathcal{E}_{T I}$ are obtained. By means of the present approach a plethora of earlier established results can be obtained as special cases.

Keywords: Energy (of graph), topological indices, vertex-degrees.
2010 MSC: 05C50, 15A18

[^0]
https://daneshyari.com/en/article/8897750

Download Persian Version:
https://daneshyari.com/article/8897750

Daneshyari.com

[^0]: * Corresponding author

 Email address: ema@elfak.ni.ac.rs, fax: +381-18-588-399 (Emina Milovanović)

