A new aspect of Riordan arrays via Krylov matrices ${ }^{*}$

Gi-Sang Cheon *, Minho Song
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

A R T I C L E I N F O

Article history:

Received 22 November 2017
Accepted 27 May 2018
Available online 31 May 2018
Submitted by R. Brualdi

MSC:

15A30
05A15

Keywords:
Riordan array
Krylov matrix
Riordan group
Riordan Lie algebra

A B S T R A C T

In this paper, we give a new angle to interpret Riordan arrays by showing that every Riordan array can be expressed as a Krylov matrix. We then use this idea to obtain some groups containing the Riordan group as a subgroup. Moreover, we study Lie algebras for the extended Riordan groups as Lie groups.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

An $n \times n$ matrix is said to be the Krylov matrix of a matrix $A \in M_{n}(\mathbb{C})$ by a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{T} \in \mathbb{C}^{n}$ if its k th column is equal to $A^{k-1} \mathbf{v}$. We write $K(A, \mathbf{v})$ for the matrix:

[^0]\[

K(A, \mathbf{v})=\left[$$
\begin{array}{lllll}
\mathbf{v} & A \mathbf{v} & A^{2} \mathbf{v} & \cdots & A^{n-1} \mathbf{v} \tag{1}
\end{array}
$$\right] \in M_{n}(\mathbb{C})
\]

Krylov matrices play a fundamental role in matrix computations. They are a key tool in understanding and developing numerical methods for solving eigenvalue problems of large sparse matrices and systems of linear equations.

If A is a triangular matrix then the Krylov matrix $K(A, \mathbf{v})$ might have special underlying structures. For example, if A is a unit lower triangular matrix of the form:

$$
A=\left[\begin{array}{cccc}
1 & & & \\
a_{2,1} & 1 & & O \\
\vdots & \ddots & \ddots & \\
a_{n, 1} & \cdots & a_{n, n-1} & 1
\end{array}\right]
$$

it can be shown that for $k \geq 1$, the k th differences of k th row of the Krylov matrix $K(A, \mathbf{v})=\left[m_{i j}\right]:$

$$
\left(\Delta^{k-1} m_{k, 1}, \Delta^{k-1} m_{k, 2}, \ldots, \Delta^{k-1} m_{k, n-k+1}\right)
$$

is the constant sequence $\left(c_{1}, \ldots, c_{k}\right)$ with $c_{1}=v_{1}, c_{k}=v_{1} a_{21} \cdots a_{k, k-1}$ for $k \geq 2$ where $\Delta^{k} m_{i, j}=\Delta^{k-1} m_{i, j+1}-\Delta^{k-1} m_{i, j}$ with $\Delta^{0} m_{i, j}=m_{i, j}$. Further, the matrix $K(A, \mathbf{v})$ can be factored into the product $L U$ where L is a lower triangular matrix with diagonal entries $c_{1}, c_{2}, \ldots, c_{n}$ and $U=P^{T}$ is the transpose of the $n \times n$ Pascal matrix P whose (i, j)-entry is $\binom{i-1}{j-1}$. A similar observation has been used in [2]. It also follows that

$$
\begin{equation*}
\operatorname{det} K(A, \mathbf{v})=v_{1}^{n} \cdot a_{2,1}^{n-1} \cdot a_{3,2}^{n-2} \cdots \cdots a_{n, n-1}^{1} \tag{2}
\end{equation*}
$$

In particular, if A is an infinite triangular matrix then the Krylov matrix $K(A, \mathbf{v})$ is infinite and it is well-defined.

An infinite lower triangular matrix $L=\left[\ell_{i j}\right]_{i, j \geq 0}$ is called a Riordan array or Riordan matrix generated by g and f if there exists a pair of formal power series (g, f), with $f(0)=0$ over the complex field such that $g f^{j}=\sum_{i \geq 0} \ell_{i j} z^{i}$ for $j \geq 0$. Usually we write $L=\mathcal{R}(g, f)$ and it is written in terms of its column generating functions as follows:

$$
\mathcal{R}(g, f)=\left[\begin{array}{llll}
g & g f & g f^{2} & \cdots \tag{3}
\end{array}\right]
$$

The purpose of this paper is to use a new angle to interpret Riordan arrays as Krylov matrices based on a simple observation of (1) and (3). We then provide a new insight that should be useful for an extension of the group of Riordan arrays called the Riordan group. More specifically, in Section 2 we first show that every Riordan array can be expressed as a Krylov matrix. We use this idea in Section 3 to obtain extended Riordan groups. Finally, in Section 4 we study Lie algebras for the extended Riordan groups.

Download Persian Version:
https://daneshyari.com/article/8897757

Daneshyari.com

[^0]: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2016R1A2B4011321 and 2016R1A5A1008055).

 * Corresponding author.

 E-mail addresses: gscheon@skku.edu (G.-S. Cheon), smh3227@gmail.com (M. Song).

