

Log-majorizations for the (symplectic) eigenvalues of the Cartan barycenter

LINEAR ALGEBRA

Applications

Fumio Hiai^a, Yongdo Lim^{b,*}

 ^a Tohoku University¹, Hakusan 3-8-16-303, Abiko 270-1154, Japan
^b Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history: Received 7 February 2018 Accepted 23 April 2018 Available online 4 May 2018 Submitted by P. Semrl

MSC: 15A42 47A64 47B65 47L07

Keywords: Positive definite matrix Riemannian trace metric Cartan barycenter Probability measure (Symplectic) eigenvalue Log-majorization

АВЅТ ВАСТ

In this paper we show that the eigenvalue map and the symplectic eigenvalue map of positive definite matrices are Lipschitz for the Cartan–Hadamard Riemannian metric, and establish log-majorizations for the (symplectic) eigenvalues of the Cartan barycenter of integrable probability Borel measures. This leads a version of Jensen's inequality for geometric integrals of matrix-valued integrable random variables.

© 2018 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: fumio.hiai@gmail.com (F. Hiai), ylim@skku.edu (Y. Lim).

¹ Emeritus.

1. Introduction

Let \mathbb{S}_n be the Euclidean space of $n \times n$ real symmetric matrices equipped with the trace inner product $\langle X, Y \rangle = \operatorname{tr}(XY)$. Let $\mathbb{P}_n \subset \mathbb{S}_n$ be the open convex cone of real positive definite matrices, which is a smooth Riemannian manifold with the Riemannian trace metric $\langle X, Y \rangle_A = \operatorname{tr} A^{-1}XA^{-1}Y$, where $A \in \mathbb{P}_n$ and $X, Y \in \mathbb{S}_n$. This is an important example of Cartan–Hadamard manifolds, simply connected complete Riemannian manifolds with non-positive sectional curvature (the canonical 2-tensor is non-negative). The Riemannian distance between $A, B \in \mathbb{P}_n$ with respect to the above metric is given by $\delta(A, B) = \|\log A^{-1/2}BA^{-1/2}\|_2$, where $\|X\|_2 = (\operatorname{tr} X^2)^{1/2}$ for $X \in \mathbb{S}_n$.

One of recent active research topics on this Riemannian manifold \mathbb{P}_n is the Cartan mean (alternatively the Riemannian mean, the Karcher mean)

$$G(A_1,\ldots,A_m) := \underset{X \in \mathbb{P}}{\operatorname{arg\,min}} \sum_{j=1}^m \delta^2(A_j,X),$$

where the minimizer exists uniquely. This is a multivariate extension of the two-variable geometric mean $A \# B := A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$, which is the unique midpoint between A and B for the Riemannian trace metric, and it retains most of its attractive properties; for instance, joint homogeneity, monotonicity, joint concavity, and the arithmetic–geometric–harmonic mean inequalities. It also extends the multivariate geometric mean on $\mathbb{R}^n_+ \subset \mathbb{P}_n$, where $\mathbb{R}_+ = (0, \infty)$, via the embedding into diagonal matrices, $(a_1, \ldots, a_n) \mapsto \text{diag}(a_1, \ldots, a_n).$

The Cartan mean extends uniquely to a contractive (with respect to the Wasserstein metric) barycentric map on the Wasserstein space of L^1 -probability measures;

$$G: \mathcal{P}^1(\mathbb{P}_n) \to \mathbb{P}_n,$$

where a probability Borel measure μ belongs to $\mathcal{P}^1(\mathbb{P}_n)$ if $\int_{\mathbb{P}_n} \delta(A, X) d\mu(A) < \infty$ for some $X \in \mathbb{P}_n$. The Cartan barycenter plays a fundamental role in the theory of integrations (random variables, expectations and variances). Let (Ω, \mathbf{P}) be a probability space and let $L^1(\Omega; \mathbb{P}_n)$ be the space of measurable functions $\varphi : \Omega \to \mathbb{P}_n$ such that $\int_{\Omega} \delta(\varphi(\omega), X) d\mathbf{P}(\omega) < \infty$ for some $X \in \mathbb{P}_n$. Then the "geometric" integral of $\varphi \in L^1(\Omega; \mathbb{P}_n)$ is naturally defined as

$$\int_{\Omega}^{(G)} \varphi(\omega) \, d\mathbf{P}(\omega) := G(\varphi_* \mathbf{P}).$$

Here, we use the notation $\int_{\Omega}^{(G)}$ to avoid the confusion with the usual \int_{Ω} in the Euclidean (or arithmetic) sense, that is, $\int_{\Omega} \varphi(\omega) d\mathbf{P}(\omega) = \mathcal{A}(\varphi_* \mathbf{P})$, where $\mathcal{A} : \mathcal{P}^{\infty}(\mathbb{P}_n) \to \mathbb{P}_n$ is the arithmetic barycenter on the space of bounded probability measures and $\varphi_* \mathbf{P}$ is the push-forward measure by φ , that is, $\varphi_* \mathbf{P}(B) = \mathbf{P}(\varphi^{-1}(B))$ for any Borel set B in \mathbb{P}_n .

Download English Version:

https://daneshyari.com/en/article/8897773

Download Persian Version:

https://daneshyari.com/article/8897773

Daneshyari.com