Accepted Manuscript

Distance energy change of complete bipartite graph due to edge deletion

Anu Varghese, Wasin So, A. Vijayakumar

PII:	S0024-3795(18)30237-4
DOI:	https://doi.org/10.1016/j.laa.2018.05.006
Reference:	LAA 14577

To appear in: Linear Algebra and its Applications

Received date: 25 January 2017
Accepted date: 4 May 2018

Please cite this article in press as: A. Varghese et al., Distance energy change of complete bipartite graph due to edge deletion, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.05.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Distance Energy Change of Complete Bipartite Graph Due to Edge Deletion

Anu Varghese ${ }^{1}$
Department of Mathematics, Bishop Chulaparambil Memorial College, Kottayam, India.
Wasin So
Department of Mathematics and Statistics, San Jose State University, San Jose, CA 95192, USA.

A. Vijayakumar

Department of Mathematics, Cochin University of Science and Technology, Cochin, India.

Abstract

The distance matrix, distance eigenvalue, and distance energy of a connected graph have been studied intensively in the literature. We propose a new problem of studying how the distance energy changes when an edge is deleted. In this paper, we prove that the distance energy of a complete bipartite graph is always increased when an edge is deleted.

Keywords: Distance matrix, Distance eigenvalue, Distance energy, Distance energy change, Edge deletion.

2010 MSC: 05C50

1. Introduction

Let G be a connected graph of order $n \geq 1$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance matrix of G is the $n \times n$ matrix $D(G)=\left[d_{i j}\right]$, where $d_{i j}$ is the distance between the vertices v_{i} and v_{j}. The eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of $D(G)$ are called the distance eigenvalues of G, and they are all real because $D(G)$ is a real symmetric matrix. The distance energy of G is defined by

$$
E_{D}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

Since $D(G)$ has zero diagonal entries, $\lambda_{1}+\cdots+\lambda_{n}=\operatorname{tr}(D(G))=0$. Hence

$$
E_{D}(G)=2 \sum_{\lambda_{i}>0} \lambda_{i}=-2 \sum_{\lambda_{i}<0} \lambda_{i}
$$

[^0]
https://daneshyari.com/en/article/8897779

Download Persian Version:
https://daneshyari.com/article/8897779

Daneshyari.com

[^0]: *Present Address: Anu Varghese, Department of Mathematics, Cochin University of Science and Technology, Cochin, India.

 Email addresses: anukarintholil@gmail.com (Anu Varghese), wasin.so@sjsu.edu (Wasin So), vambat@gmail.com (A. Vijayakumar)

