Spectral characterizations of signed cycles

Saieed Akbari ${ }^{\text {a }}$, Francesco Belardo ${ }^{\text {b,* }}$, Ebrahim Dodongeh ${ }^{\text {a }}$, Mohammad Ali Nematollahi ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Sharif University of Technology, Iran
${ }^{\text {b }}$ Department of Mathematics and Applications " R. Caccioppoli", University of Naples Federico II, Italy

A R T I C L E I N F O

Article history:

Received 17 April 2018
Accepted 9 May 2018
Available online xxxx
Submitted by R. Brualdi

MSC:

05 C 22
05C50
Keywords:
Signed cycles
Laplacian spectrum
Spectrum
Cospectral mate
Spectral determination

Abstract

A signed graph is a pair like (G, σ), where G is the underlying graph and $\sigma: E(G) \rightarrow\{-1,+1\}$ is a sign function on the edges of G. In this paper we study the spectral determination problem for signed n-cycles $\left(C_{n}, \sigma\right)$ with respect to the adjacency spectrum and the Laplacian spectrum. In particular, for the Laplacian spectrum, we prove that balanced odd cycles and unbalanced cycles, denoted, respectively, by $C_{2 n+1}^{+}$and C_{n}^{-}, are uniquely determined by their Laplacian spectra (i.e., they are DLS). On the other hand, we determine all Laplacian cospectral mates of the balanced even cycles $C_{2 n}^{+}$, so that we show that $C_{2 n}^{+}$ is not DLS. The same problem is then considered for the adjacency spectrum, hence we prove that odd signed cycles, namely, $C_{2 n+1}^{+}$and $C_{2 n+1}^{-}$, are uniquely determined by their (adjacency) spectrum (i.e., they are DS). Moreover, we find cospectral mates for the even signed cycles $C_{2 n}^{+}$and $C_{2 n}^{-}$, and we show that, except the signed cycle C_{4}^{-}, even signed cycles are not DS and we provide almost all cospectral mates.

© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction and terminology

By a graph $G=(V, E)$, we mean a simple graph without loops or multiple edges, where $V=V(G)$ and $E=E(G)$ are the set of vertices and edges of G, respectively. Let $\sigma: E(G) \rightarrow\{-1,+1\}$ be a mapping defined on the edges of G. Then, the pair $\Gamma=(G, \sigma)$ is called a signed graph, where G is its underlying graph. We also say that G is an unsigned graph. If $v \in V$ is a vertex of Γ, then by $d_{\Gamma}(v)$ we mean the degree of v in G. A cycle in Γ is said to be positive if it contains an even number of negative edges, otherwise the cycle is called negative. A signed graph is said to be balanced if all its cycles are positive, otherwise it is unbalanced. Most of the usual graph theory glossary directly extends to signed graphs; for basic notation on signed graphs the reader is referred to [15]. Signed graphs were introduced by Harary [10] in connection with the study of the theory of social psychology. Among the fundamental works in this area, we can refer to Zaslavsky's papers [17] and [18]. Also, for a possibly complete bibliography on signed graphs see [14].

Now, let $\theta: V \rightarrow\{-1,+1\}$ be a sign function. The switching Γ by θ is a new signed graph $\Gamma^{\theta}=\left(G, \sigma^{\theta}\right)$, where $\sigma^{\theta}(e)=\theta\left(v_{i}\right) \sigma(e) \theta\left(v_{j}\right)$ for each edge $e=v_{i} v_{j} \in E(G)$. Two signed graphs Γ and Λ are switching equivalent and we write $\Gamma \sim \Lambda$ if there exists a switching function θ such that $\Lambda=\Gamma^{\theta}$. Obviously, \sim is an equivalence relation on signed graphs with the same underlying graph. It is worthy to notice that the signature switching does not affect the sign of the cycles, i.e., Γ and Γ^{θ} share the set of positive cycles. Additionally, the sign of non-cyclic edges (say, bridges) is irrelevant. Therefore, if G is a tree, then all signed graphs on G are switching equivalent. Also, for unicyclic graphs, there are exactly two different switching equivalent classes. In particular, C_{n}, the cycle of order n, has two switching equivalent classes; the positive (or, balanced) cycles and the negative (or, unbalanced) cycles which are denoted by C_{n}^{+}and C_{n}^{-}, respectively.

Similarly to unsigned graphs, matrices can be used to study signed graphs. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertices of Γ. Then, the adjacency matrix of $\Gamma, A(\Gamma)$ or simply A, is defined as following: $[A]_{i j}=\sigma\left(v_{i}, v_{j}\right) a_{i j}$, where $a_{i j}=1$ if v_{i} and v_{j} are adjacent and $a_{i j}=0$ otherwise. The polynomial $\phi(\Gamma, \lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+a_{1}^{\sigma} \lambda^{n-1}+\cdots+a_{n-1}^{\sigma} \lambda+a_{n}^{\sigma}$ is called the characteristic polynomial of Γ and its roots are eigenvalues or spectrum of Γ, denoted by $\operatorname{Spec}(\Gamma)$. Note that the characteristic polynomial of the null graph, the graph with no vertices and edges, is defined to be the constant polynomial 1.

Also, the matrix $L(\Gamma)=D(\Gamma)-A(\Gamma)$, or simply L, is called the Laplacian matrix of Γ, where $D(\Gamma)$ is the $n \times n$ diagonal matrix with $d\left(v_{1}\right), \ldots, d\left(v_{n}\right)$ as the diagonal entries (and all other entries 0). The polynomial $\psi(\Gamma, \mu)=\operatorname{det}(\mu I-L)$ is called the Laplacian polynomial of Γ and its roots are Laplacian eigenvalues or Laplacian spectrum of Γ, denoted by $\operatorname{Spec}_{L}(\Gamma)$. Observe that permuting the vertices in the underlying graph does not change the spectrum or the L-spectrum; a similar feature holds with signature switching: Γ and Γ^{θ} share the same adjacency or Laplacian spectrum. Therefore, if a signed graph can be switched into an isomorphic copy of another signed graph, then the two signed graphs are said to be switching isomorphic and they will get the same

https://daneshyari.com/en/article/8897785

Download Persian Version:

https://daneshyari.com/article/8897785

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: s_akbari@sharif.edu (S. Akbari), fbelardo@unina.it (F. Belardo), dodangeh_e@mehr.sharif.edu (E. Dodongeh), mohammadali.nematollahi69@student.sharif.ir (M.A. Nematollahi).

