

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Lie product and local spectrum preservers

Z. Abdelali^a, A. Bourhim^{b,*}, M. Mabrouk^{c,d}

^a Department of Mathematics, Faculty of sciences, Mohammed-V University, Rabat, Morocco

^d Department of Mathematics, Faculty of Sciences of Gabès, University of Gabès, Cité Erriadh, 6072 Zrig, Gabès, Tunisia

ARTICLE INFO

Article history: Received 19 February 2018 Accepted 9 May 2018 Available online 17 May 2018 Submitted by P. Semrl

MSC: primary 47B49 secondary 47A10, 47A11

Keywords: Nonlinear preservers Local spectrum The single-valued extension property Lie product

ABSTRACT

Let X and Y be two infinite-dimensional complex Banach spaces, and fix two nonzero vectors $x_0 \in X$ and $y_0 \in Y$. Let $\mathcal{B}(X)$ (resp. $\mathcal{B}(Y)$) denote the algebra of all bounded linear operators on X (resp. on Y), and let $\mathcal{E}_{x_0}(X)$ be the collection of all operators $T \in \mathcal{B}(X)$ for which x_0 is an eigenvector and $(T - r\mathbf{1}_X)^2$ is a nonzero scalar operator for some scalar $r \in \mathbb{C}$. We show that a map φ from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ satisfies

$$\sigma_{\varphi(T)\varphi(S)-\varphi(S)\varphi(T)}(y_0) = \sigma_{TS-ST}(x_0), \ (T, \ S \in \mathcal{B}(X)),$$

if and only if there are two functions $\eta : \mathcal{B}(X) \to \mathbb{C}$ and $\xi : \mathcal{B}(X) \to \{-1, 1\}$, and a bijective bounded linear mapping $A : X \to Y$ such that $Ax_0 = y_0$, the function ξ is constant on $\mathcal{B}(X) \setminus \mathcal{E}_{x_0}(X)$, and

$$\varphi(T) = \xi(T)ATA^{-1} + \eta(T)\mathbf{1}_Y$$

for all $T \in \mathcal{B}(X)$.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: zineelabidineabdelali@gmail.com (Z. Abdelali), abourhim@syr.edu (A. Bourhim), msmabrouk@uqu.edu.sa (M. Mabrouk).

 $\label{eq:https://doi.org/10.1016/j.laa.2018.05.013} 0024-3795 \end{tabular} 0024-3795 \end{tabular} 0218 \ \mbox{Elsevier Inc. All rights reserved}.$

LINEAR

lications

^b Syracuse University, Department of Mathematics, 215 Carnegie Building, Syracuse, NY 13244, USA

^c Department of Mathematics, Faculty of Applied Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia

1. Introduction and statement of main result

Throughout this paper, X and Y denote infinite-dimensional complex Banach spaces, and let $x_0 \in X$ and $y_0 \in Y$ be two nonzero vectors. Let $\mathcal{B}(X)$ (resp. $\mathcal{B}(Y)$) denote the algebra of all bounded linear operators on X (resp. on Y), and denote its identity operator by 1. The local resolvent set, $\rho_T(x)$, of an operator $T \in \mathcal{B}(X)$ at a point $x \in X$ is the union of all open subsets U of \mathbb{C} for which there is an analytic function $\zeta: U \to X$ such that $(T-\lambda)\zeta(\lambda) = x$, $(\lambda \in U)$. The local spectrum of T at x is $\sigma_T(x) := \mathbb{C} \setminus \rho_T(x)$, and is obviously a closed subset of $\sigma(T)$, the spectrum of T. An operator $T \in \mathcal{B}(X)$ is said to have the single-valued extension property (SVEP) if for every open subset U of \mathbb{C} , the equation $(T-\lambda)\varphi(\lambda)=0$, $(\lambda \in U)$, has no nontrivial X-valued analytic solution φ . Recall that $\sigma_T(x) \neq \emptyset$ for all nonzero vectors x in X precisely when T has the SVEP, and note that every operator $T \in \mathcal{B}(X)$ for which the interior of its point spectrum, $\sigma_p(T)$, is empty enjoys this property. Note that if $T \in \mathcal{B}(X)$ has SVEP and $Tx = \alpha x$ for some nonzero vector $x \in X$ and $\alpha \in \mathbb{C}$, then $\sigma_T(x) = \{\alpha\}$. Note also that if $T \in \mathcal{B}(X)$ has SVEP and $Tx = \alpha y$ for some vectors $x, y \in X$ and $\alpha \in \mathbb{C}$, then $\sigma_T(y) \subset \sigma_T(x) \subset \sigma_T(y) \cup \{0\}$. Moreover, $\sigma_T(Rx) \subset \sigma_T(x)$ for all commuting operators T and R in $\mathcal{B}(X)$ and all $x \in X$. Furthermore, $\sigma_T(x+y) \subset \sigma_T(x) \cup \sigma_T(y)$ for all $T \in \mathcal{B}(X)$ and $x, y \in X$, and the equality holds if $\sigma_T(x) \cap \sigma_T(y) = \emptyset$. For more information on local spectral theory, the interested reader may consult the remarkable books of Aiena [3] and of Laursen and Neumann [18].

Beside the recent works [1,2,5-10] on nonlinear local spectra preserver problems, we are motivated by several papers where the main interest is focused on characterizing nonlinear maps preserving a spectral quantity or relation of Jordan and Lie products of operators or matrices; see for instance [11-17,19-21]. In [5, Theorem 2.1], the second and third authors described the form of all maps preserving the local spectrum of Jordan product of operators on a complex Banach space. They showed that a map φ from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ satisfies

$$\sigma_{\varphi(T)\varphi(S)+\varphi(S)\varphi(T)}(y_0) = \sigma_{TS+ST}(x_0), \ (T, \ S \in \mathcal{B}(X))$$
(1.1)

if and only if there exists a bijective bounded linear mapping A from X into Y such that $Ax_0 = y_0$ and $\varphi(T) = \pm ATA^{-1}$ for all $T \in \mathcal{B}(X)$. In the present paper, we characterize all maps φ from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$ preserving the local spectrum of Lie product [S,T] := ST - TS of operators. Note that, since $[S,T] = [S + \lambda \mathbf{1}, T + \mu \mathbf{1}]$ for all $S, T \in \mathcal{B}(X)$ and $\lambda, \mu \in \mathbb{C}$, for every function $\eta : \mathcal{B}(X) \to \mathbb{C}$ and a bijective map $A : X \to Y$ such that $Ax_0 = y_0$, the map

$$\varphi(T) = \pm ATA^{-1} + \eta(T)\mathbf{1}_Y, \ (T \in \mathcal{B}(X))$$
(1.2)

satisfies

$$\sigma_{[\varphi(T), \varphi(S)]}(y_0) = \sigma_{[T, S]}(x_0), \ (T, S \in \mathcal{B}(X)).$$
(1.3)

Download English Version:

https://daneshyari.com/en/article/8897786

Download Persian Version:

https://daneshyari.com/article/8897786

Daneshyari.com