Linear Algebra and its Applications ••• (••••) •••-•••

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the A_{α} -spectral radius of a graph

Jie Xue^a, Huiqiu Lin^b, Shuting Liu^a, Jinlong Shu^{a,*}

^a Department of Computer Science and Technology, East China Normal University, Shanghai, PR China

^b Department of Mathematics, East China University of Science and Technology, Shanghai, PR China

ARTICLE INFO

Article history: Received 28 October 2017 Accepted 16 March 2018 Available online xxxx Submitted by D. Stevanovic

MSC: 05C50

Keywords:
Adjacency matrix
Signless Laplacian
Spectral radius
Bounds

ABSTRACT

Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For any real $\alpha \in [0, 1]$, Nikiforov [3] defined the matrix $A_{\alpha}(G)$ as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G).$$

The largest eigenvalue of $A_{\alpha}(G)$ is called the A_{α} -spectral radius of G. In this paper, we give three edge graft transformations on A_{α} -spectral radius. As applications, we determine the unique graph with maximum A_{α} -spectral radius among all connected graphs with diameter d, and determine the unique graph with minimum A_{α} -spectral radius among all connected graphs with given clique number. In addition, some bounds on the A_{α} -spectral radius are obtained. © 2018 Elsevier Inc. All rights reserved.

E-mail addresses: jie_xue@126.com (J. Xue), jlshu@math.ecnu.edu.cn (J. Shu).

 $\rm https://doi.org/10.1016/j.laa.2018.03.038$

 $0024\text{-}3795/\odot$ 2018 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

1. Introduction

All graphs considered here are simple and undirected. Let G be a graph with vertex set V(G) and edge set E(G). The number |V(G)| (|E(G)|) is the order (size) of G. The neighborhood N(v) of a vertex v is $\{u \in V(G) : uv \in E(G)\}$ and the number $d_v = |N(v)|$ is the degree of v. If $S \subseteq V(G)$, then we use G[S] to denote the subgraph of G induced by G. Let G and G be two sets of G. We denote by G be a graph obtained from G by deleting G and all edges incident to G. We use $G \subseteq G$ be two disjoint graphs. The graph G is the graph with vertex set G be two disjoint graphs. The graph G be denote by G be denote by G and edge set G be denote by G and G be denote by G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denote by G be denote by G and G be denoted by G and G be

Let G be a graph with vertex set $\{v_1, v_2, \ldots, v_n\}$. The adjacency matrix of G is denoted by A(G). The (i, j)-entry of A(G) is 1 if $v_i v_j \in E(G)$, and otherwise 0. Let D(G) be the diagonal matrix of the degrees of G. For any real $\alpha \in [0, 1]$, Nikiforov [3] defined the matrix $A_{\alpha}(G)$ as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G).$$

It is clear that $A_{\alpha}(G)$ is adjacency matrix if $\alpha = 0$, and $A_{\alpha}(G)$ is essentially equivalent to signless Laplacian matrix if $\alpha = 1/2$. We denote the eigenvalues of $A_{\alpha}(G)$ by $\lambda_1(A_{\alpha}(G)) \geq \lambda_2(A_{\alpha}(G)) \geq \cdots \geq \lambda_n(A_{\alpha}(G))$. The largest eigenvalue $\rho(G) := \lambda_1(A_{\alpha}(G))$ is called the A_{α} -spectral radius of G. More contents about A_{α} -matrix, one can see [3–5].

One of the central issues in spectral extremal graph theory is: For a graph matrix, determine the maximization or minimization of spectral invariants over various families of graphs. Many researchers have studied the analogous problems. Let P_k and P_l be two paths with $k \geq 1$, $l \geq 1$ and d = k + l. Let $K_{n-d}(k,l)$ be a graph obtained from a complete graph K_{n-d} by connecting all vertices of K_{n-d} to an end vertex of P_k and connecting all vertices to an end vertex of P_l , where k + l = d. In [2], van Dam proved that $K_{n-d}(\lfloor \frac{d}{2} \rfloor, \lceil \frac{d}{2} \rceil)$ attains the maximum A-spectral radius among all graphs with diameter d. Wang and Huang [9] presented that $K_{n-d}(\lfloor \frac{d}{2} \rfloor, \lceil \frac{d}{2} \rceil)$ also attains the maximum $A_{\frac{1}{2}}$ -spectral radius among all graphs with diameter d. We generalize their results to $0 \leq \alpha < 1$.

Theorem 1.1. Let $0 \le \alpha < 1$. If G is a connected graph with diameter $d \ge 2$, then

$$\rho(G) \le \rho(K_{n-d}(\lfloor \frac{d}{2} \rfloor, \lceil \frac{d}{2} \rceil)),$$

where equality holds if and only if $G \cong K_{n-d}(\lfloor \frac{d}{2} \rfloor, \lceil \frac{d}{2} \rceil)$.

Please cite this article in press as: J. Xue et al., On the A_{α} -spectral radius of a graph, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.03.038

2

Download English Version:

https://daneshyari.com/en/article/8897830

Download Persian Version:

https://daneshyari.com/article/8897830

<u>Daneshyari.com</u>