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The main goal of this article is to present numerical radius in-
equalities for matrices based on convexity of certain numerical 
radius functions. This simple approach extends some unitarily 
invariant norms inequalities, such as Heinz and Young inequal-
ities, to the context of numerical radius. However, due to weak 
unitary invariance of the numerical radius, these extended 
inequalities will be weaker than the corresponding unitarily 
invariant norms versions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

As usual, Mn will stand for the algebra of all n ×n complex matrices that contains the 
cone of positive semi-definite matrices M+

n and that of strictly positive matrices M++
n . 

If A ∈ M
+
n , we write A ≥ 0 while A > 0 will mean A ∈ M

++
n .
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Matrices and their inequalities have attracted researchers working in operator theory. 
These inequalities have been studied in different approaches among which unitarily in-
variant norms are most common. In this context, a unitarily invariant norm is a norm 
‖ | ‖ | defined on Mn with the additional property ‖ |UAV ‖ | = ‖ |A‖ | for all unitaries 
U, V ∈ Mn. We refer the reader to [3,4,10,14–18] as a sample of research treating in-
equalities governing unitarily invariant norms.

Among the most basic inequalities for unitarily invariant norms are

2‖|A1/2XB1/2‖| ≤ ‖|AtXB1−t + A1−tXBt‖| ≤ ‖|AX + XB‖| (1.1)

where A, B ∈ M
+
n , X ∈ Mn and 0 ≤ t ≤ 1. This pair of inequalities is usually referred 

to as Heinz inequality; in which the middle term are the Heinz means which interpolate 
between the geometric and arithmetic means.

On the other hand, the Hölder-type inequality

‖|AtXBt‖| ≤ ‖|X‖|1−t‖|AXB‖|t (1.2)

was proved in [11] for the same parameters. This inequality then entails the Young-type 
inequality

‖|AtXB1−t‖| ≤ t‖|AX‖| + (1 − t)‖|XB‖|. (1.3)

A stronger version than (1.3) would be

‖|AtXB1−t‖| ≤ ‖|t AX + (1 − t)XB‖|. (1.4)

Unfortunately, (1.4) is not true for arbitrary unitarily invariant norm. However, it is true 
for the Hilbert–Schmidt norm ‖ ‖2, see [8].

A weaker version is having X = I, the identity, in (1.4). In this case, the inequality is 
true as proved first in [3].

The main purpose of this paper is to study similar inequalities for the numerical 
radius. Recall that the numerical radius ω(A) of the matrix A ∈ Mn is defined as

ω(A) = sup{| 〈Ax, x〉 | : x ∈ C
n, ‖x‖ = 1}.

It is well known that ω defines a norm on Mn. However, this norm is not unitar-
ily invariant, but is weakly invariant, meaning that ω(UAU ∗) = ω(A) for any unitary 
matrix U .

In [12] the Heinz-type inequality

ω
(
A1/2XB1/2

)
≤ 1

2ω
(
AtXB1−t + A1−tXBt

)
, A,B ≥ 0, X ∈ Mn (1.5)
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