On switching classes of graphs

Boumediene Et-Taoui, Augustin Fruchard *
Département de Mathématiques, IRIMAS, Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse cedex, France

A R T I C L E I N F O

Article history:

Received 24 September 2015
Accepted 16 March 2018
Available online 21 March 2018
Submitted by R. Brualdi

MSC:

05C60
05C50
51A05

Keywords:

Seidel switching
Self-complementary
Signature
Paley conference graph
Seidel adjacency matrix
Shape invariant

A B S T R A C T

A class of non-oriented simple graphs is called Seidel switching self-complementary (s.s.c. for short) if the complement of any representing graph is in the same equivalence class. Relating the Seidel adjacency matrix of a graph with a Gram matrix, we introduce the 3 -signature (s, t) of a switching class of n-vertex graphs. The numbers s and t are the numbers of positive and negative triples within any representing graph of the class. It appears that, for any s.s.c. class of n-vertex graphs, these numbers are equal, yielding $\binom{n}{3}$ even. Consequently if $n \equiv 3(\bmod 4)$ then there is no s.s.c. class of n-vertex graphs. We also prove that this 3 -signature depends only on the spectrum of the adjacency matrix of the graph. We then consider the switching classes of Paley conference graphs with $4 k+2$ vertices, $4 k+1=p^{\alpha}, p$ an odd prime and α a positive integer. We reprove that these classes are s.s.c. Moreover, it is proven that all $4 k$-vertex graphs contained in a $(4 k+2)$-vertex Paley conference graph are switching equivalent and their class is still a s.s.c. class. In addition, the 3 -signature is generalized in view of obtaining a complete invariant of switching classes up to order 8.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

We deal with simple non-oriented graphs. Two graphs are called isomorphic if there is a one-to-one correspondence between their vertex-sets which preserves adjacency. The complement \bar{G} of a graph G has the same vertex-set as G but two vertices of \bar{G} are adjacent in \bar{G} if and only if they are not adjacent in G. A graph is self-complementary if it is isomorphic to its complement. There is a huge literature about self-complementary graphs, see e.g. [4,5,13,14] and the references therein.

In this article, we are concerned with another notion of self-complementarity. Given a graph, a Seidel switching at any vertex consists of erasing the existing edges and adding the nonexisting ones. Two graphs are called Seidel switching equivalent if one can pass from one graph to the other by Seidel switching operations. A Seidel switching self-complementary class of graphs (s.s.c. class for short) is a class of graphs in which any representing graph is Seidel switching equivalent to its complement. This notion has been introduced by van Lint and Seidel [9] in relation with equiangular lines of the Euclidean space, see Section 2. This geometric setting yields quickly our first result: With the use of the shape invariant of triples $[1,2]$ we obtain that a necessary condition for a class of n-vertex graphs to be s.s.c. is that $\binom{n}{3}$ be even. This result already appeared in [7], but with different methods. In [15], Sozański determines explicitly the number of s.s.c. classes of n-vertex graphs for any integer n.

In 1933, Paley [11] used the Legendre symbol on finite fields to construct symmetric conference matrices of order $p^{\alpha}+1, p$ prime, $p^{\alpha} \equiv 1(\bmod 4)$. We call the corresponding graph a Paley conference graph. We recall this construction in Section 3. In [14], Sachs proved that the well-known p^{α}-vertex Paley graph is self-complementary (in the ordinary sense). In [3], the authors quoted without proof that the ($p^{\alpha}+1$)-vertex Paley conference graph is in a s.s.c. class. In [6] the authors proved that all p^{α}-vertex subgraphs of the Paley conference graph are switching equivalent, hence they are representing graphs of a s.s.c. class. In this article we pursue this road one step further, proving that all ($p^{\alpha}-1$)-vertex subgraphs of a Paley conference graph are also switching equivalent and that their class is s.s.c.

In Section 4 we introduce a more general notion of signature of a switching class of graphs and we prove that this signature together with the determinant form a complete invariant up to order 8 at least for the number of vertices. The question whether this remains true for all orders is analogous in our context to the well-known Kelly-Ulam reconstruction conjecture [8,12]. Another related question of reconstruction in the context of vertex-switching was asked by Stanley [17]. Note that these three questions are independent.

2. Equiangular lines and Seidel switching classes of graphs

A n-tuple of lines of \mathbb{R}^{d} is called equiangular of parameter $\left.a \in\right] 0,1[$ if, for any two lines and any unit vectors x, y on each of them, the inner product of x and y satisfies

https://daneshyari.com/en/article/8897851

Download Persian Version:

https://daneshyari.com/article/8897851

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Boumediene.Ettaoui@uha.fr (B. Et-Taoui), Augustin.Fruchard@uha.fr (A. Fruchard).

