Elliptical higher rank numerical range of some Toeplitz matrices

Maria Adam ${ }^{\text {a }}$, Aikaterini Aretaki ${ }^{\text {a,* }}$, Ilya M. Spitkovsky ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
${ }^{\text {b }}$ Division of Science and Mathematics, New York University Abu Dhabi
(NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates

A R T I C L E I N F O

Article history:

Received 6 March 2018
Accepted 11 March 2018
Available online 15 March 2018
Submitted by A. Böttcher

MSC:

15A60
15A90
81P68

Keywords:
Rank- k numerical range
Numerical range
Tridiagonal Toeplitz matrix

Abstract

The higher rank numerical range is described for a class of matrices which happen to be unitarily reducible to direct sums of (at most) 2-by-2 blocks. In particular, conditions are established under which tridiagonal matrices have elliptical rank- k numerical ranges.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Researchers from the field of theoretical physics implemented several methodologies to resolve problems arising in quantum error correction. The main effort was to eliminate

[^0]the error factors created during transmission of quantum information and to describe possible corruption induced in the quantum system. Motivated by a physical problem, Choi et al. in their pioneering articles [7-9], reduced this problem to a purely mathematical introducing the notion of higher rank numerical ranges, and triggering the interest of many authors leading to an extensive literature [1,2,16,17,21].

Let $\mathcal{M}_{m, n}(\mathbb{C})$ (resp., $\mathcal{M}_{m, n}(\mathbb{R})$) denote the set of all $m \times n$ complex (resp., real) matrices, with the notation $\mathcal{M}_{n, n}(\mathbb{C})$ abbreviated further to $\mathcal{M}_{n}(\mathbb{C})$.

For a positive integer $1 \leq k \leq n$, the rank-k numerical range of $A \in \mathcal{M}_{n}(\mathbb{C})$ is defined and denoted by

$$
\Lambda_{k}(A)=\{\lambda \in \mathbb{C}: P A P=\lambda P \text { for some rank } k \text { orthogonal projection } P\}
$$

Note that the rank-1 numerical range coincides with the classical numerical range [15]

$$
\Lambda_{1}(A) \equiv F(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

The latter set encompasses all the eigenvalues of matrix A, that is the spectrum $\sigma(A)=$ $\{\lambda \in \mathbb{C}: \operatorname{det}(\lambda I-A)=0\}$.

The higher rank numerical ranges $\left\{\Lambda_{k}(A)\right\}_{k \geq 1}$ form a decreasing sequence of compact sets, due to the inclusion relations

$$
\Lambda_{1}(A) \supseteq \Lambda_{2}(A) \supseteq \cdots \supseteq \Lambda_{k}(A)
$$

and they further enjoy a number of basic algebraic and geometric properties $[7,8,16]$:
$\left(\mathbf{P}_{1}\right) \quad \Lambda_{k}(a A+b I)=a \Lambda_{k}(A)+b$, for any $a, b \in \mathbb{C}$.
$\left(\mathbf{P}_{2}\right) \quad \Lambda_{k}\left(U^{*} A U\right)=\Lambda_{k}(A)$, for any unitary $U \in \mathcal{M}_{n}(\mathbb{C})$.
$\left(\mathbf{P}_{3}\right) \quad \Lambda_{k}(A) \subseteq \Lambda_{k}(H(A))+\mathrm{i} \Lambda_{k}(S(A))$, where $H(A)=\left(A+A^{*}\right) / 2$ and $S(A)=$ $\left(A-A^{*}\right) / 2 \mathrm{i}$ are the Hermitian and skew-Hermitian parts of matrix A, respectively.
$\left(\mathbf{P}_{4}\right) \quad \Lambda_{k}\left(A_{1} \oplus A_{2}\right) \supseteq \Lambda_{k}\left(A_{1}\right) \cup \Lambda_{k}\left(A_{2}\right)$, where the symbol \oplus stands for the direct sum of matrices $A_{1}, A_{2} \in \mathcal{M}_{n}(\mathbb{C})$.
$\left(\mathbf{P}_{5}\right) \quad \Lambda_{k_{1}+k_{2}}\left(A_{1} \oplus A_{2}\right) \supseteq \Lambda_{k_{1}}\left(A_{1}\right) \cap \Lambda_{k_{2}}\left(A_{2}\right)$, for any $k_{1}, k_{2} \in\{1, \ldots, n\}$.
$\left(\mathbf{P}_{\mathbf{6}}\right) \quad$ If $n \geq 3 k-2$, then $\Lambda_{k}(A) \neq \emptyset$. On the other hand, $\Lambda_{n}(A) \neq \emptyset$ precisely when $A=\lambda I_{n}$.

For any $1 \leq k \leq n, \Lambda_{k}(A)$ are convex sets (see [21]). Specifically, they coincide with the intersection of half-planes

$$
\begin{equation*}
\Lambda_{k}(A)=\bigcap_{\theta \in[0,2 \pi)} e^{-\mathrm{i} \theta}\left\{z \in \mathbb{C}: \operatorname{Re} z \leq \lambda_{k}\left(H_{\theta}(A)\right)\right\} \tag{1.1}
\end{equation*}
$$

where $\lambda_{k}(\cdot)$ denotes the k-th largest eigenvalue of a matrix and $H_{\theta}(A)=H\left(e^{\mathrm{i} \theta} A\right)$ (see [17]). In case of a normal matrix A with spectrum $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, the expression (1.1) yields the intersection of the convex hulls (polygons)

https://daneshyari.com/en/article/8897852

Download Persian Version:
https://daneshyari.com/article/8897852

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: madam@dib.uth.gr (M. Adam), kathy@mail.ntua.gr (A. Aretaki), ims2@nyu.edu, imspitkovsky@gmail.com (I.M. Spitkovsky).

