Duality and the signed Laplacian matrix of a graph

Derek A. Smith ${ }^{\text {a }}$, Lorenzo Traldi ${ }^{\text {a }}$, William Watkins ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Lafayette College, Easton, PA 18042, United States
${ }^{\text {b }}$ California State University Northridge, Northridge, CA 91330, United States

A R T I C L E I N F O

Article history:
Received 15 October 2017
Accepted 20 February 2018
Available online 24 February 2018
Submitted by P. Semrl

MSC:

primary $05 \mathrm{C} 10,15 \mathrm{~B} 36$
secondary $05 \mathrm{C} 05,05 \mathrm{C} 22$, 05C50
Keywords:
Dual graphs
Signed Laplacian matrix
Unimodular congruence
Kirchhoff polynomials

A B S T R A C T

We give a necessary and sufficient condition for a bijection between the edge sets of two graphs to be a dual bijection. The condition involves unimodular congruence of augmented signed Laplacian matrices for the two graphs.
© 2018 Elsevier Inc. All rights reserved.

1. Dual graphs and Laplacian matrices

Let G be a connected graph with n vertices $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$. Multiple edges and loops are allowed. The Laplacian matrix, $L(G)$, of G is the $n \times n$ matrix defined as follows:

$$
L(G)=\sum_{e \in E(G)} F(e)
$$

[^0]where for edge $e=i j, F(e)$ is the $n \times n$ matrix whose only nonzero entries are +1 in diagonal positions (i, i) and (j, j) and -1 in positions (i, j) and (j, i). If $e=i i$ is a loop, then $F(e)=0$, otherwise $F(e)$ is a symmetric rank-one matrix whose rows (and columns) sum to zero.

For example, if G has three vertices and four edges, $E(G)=\{12,12,23,33\}$ then

$$
\begin{aligned}
L(G) & =F(12)+F(12)+F(23)+F(33) \\
& =\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & -2 & 0 \\
-2 & 3 & -1 \\
0 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

The loop 33 contributes nothing to the Laplacian matrix; adding or removing loops from the edge set of a graph does not change the Laplacian matrix for the graph.

For an excellent survey of the Laplacian matrix, see [2].
We write $A \stackrel{\text { ucon }}{\cong} B$ if there exists a unimodular matrix U such that $B=U A U^{T}$.
A reduced Laplacian matrix $L_{i}^{\prime}(G)$ for G is the $(n-1) \times(n-1)$ matrix obtained by deleting row and column i from $L(G)$. There are n different reduced Laplacian matrices and they are all congruent by a unimodular matrix. (See Lemma 1 in Section 5.) Throughout the rest of this paper, $L^{\prime}(G)$ denotes any one of the reduced Laplacian matrices of G.

Definition 1 (Dual bijection). Two graphs G, H are duals if there is a bijection $\delta: E(G) \rightarrow$ $E(H)$ such that edge sets of spanning trees in G correspond to the complements of edge sets of spanning trees in H. If there is a bijection satisfying the above condition, it is called a dual bijection.

In this paper, we establish necessary and sufficient conditions involving unimodular congruence and Laplacian matrices for a bijection from $E(G)$ to $E(H)$ to be a dual bijection. The first result of this type appeared in [1]. Using methods from knot theory -in particular Goeritz congruence and Reidemeister moves (see [4]) -it gives a necessary condition for G and H to be dual graphs.

Proposition 1 ([1], Corollary 1). Let G and H be connected dual planar graphs with n and k vertices, respectively, and let $L^{\prime}(G), L^{\prime}(H)$ be (any) reduced Laplacian matrices for G and H. Then there exist $(0, \pm 1)$-diagonal matrices Δ_{1}, Δ_{2} such that

$$
\begin{equation*}
L^{\prime}(G) \oplus\left(-\Delta_{2}\right) \stackrel{\text { ucon }}{\cong} \Delta_{1} \oplus\left(-L^{\prime}(H)\right) \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/8897858

Download Persian Version:

https://daneshyari.com/article/8897858

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: bill.watkins@csun.edu (W. Watkins).

