

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A new family of MRD-codes $\stackrel{\Leftrightarrow}{\approx}$

LINEAR ALGEBRA

plications

Bence Csajbók^a, Giuseppe Marino^{b,*}, Olga Polverino^b, Corrado Zanella^c

^a MTA-ELTE Geometric and Algebraic Combinatorics Research Group, ELTE Eötvös Loránd University, Budapest, Hungary, Department of Geometry, 1117 Budapest, Pázmány P. stny. 1/C, Hungary

^b Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy

^c Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy

ARTICLE INFO

Article history: Received 7 June 2017 Accepted 28 February 2018 Available online 12 March 2018 Submitted by R. Brualdi

MSC: 51E20 05B25 51E22

Keywords: Scattered subspace MRD-code Linear set

ABSTRACT

We introduce a family of linear sets of $PG(1, q^{2n})$ arising from maximum scattered linear sets of pseudoregulus type of $PG(3, q^n)$. For n = 3, 4 and for certain values of the parameters we show that these linear sets of $PG(1, q^{2n})$ are maximum scattered and they yield new MRD-codes with parameters (6, 6, q; 5) for q > 2 and with parameters (8, 8, q; 7) for q odd.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: csajbokb@cs.elte.hu (B. Csajbók), giuseppe.marino@unicampania.it (G. Marino), olga.polverino@unicampania.it (O. Polverino), corrado.zanella@unipd.it (C. Zanella).

 $^{^{*}}$ The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA – INdAM). The first author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by OTKA Grant No. K 124950.

^{0024-3795/© 2018} Elsevier Inc. All rights reserved.

1. Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda = PG(V, \mathbb{F}_{q^n}) = PG(r-1, q^n)$, where V is a vector space of dimension r over \mathbb{F}_{q^n} . A point set L of Λ is said to be an \mathbb{F}_q -linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_q -vector subspace U of V, i.e.

$$L = L_U = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{a^n}} : \mathbf{u} \in U \setminus \{\mathbf{0}\} \}.$$

The maximum field of linearity of an \mathbb{F}_q -linear set L_U is \mathbb{F}_{q^t} if $t \mid n$ is the largest integer such that L_U is an \mathbb{F}_{q^t} -linear set.

Two linear sets L_U and L_W of Λ are said to be PFL-equivalent (or simply equivalent) if there is an element ϕ in PFL (r, q^n) , the collineation group of Λ , such that $L_U^{\phi} = L_W$. It may happen that two \mathbb{F}_q -linear sets L_U and L_W of Λ are PFL-equivalent even if the two \mathbb{F}_q -vector subspaces U and W are not in the same orbit of $\mathrm{FL}(r, q^n)$, the group of invertible \mathbb{F}_{q^n} -semilinear transformations of V (see [8] and [5] for further details).

The set of $m \times n$ matrices $\mathbb{F}_q^{m \times n}$ over \mathbb{F}_q is a rank metric \mathbb{F}_q -space with rank metric distance defined by d(A, B) = rk(A - B) for $A, B \in \mathbb{F}_q^{m \times n}$. A subset $\mathcal{C} \subseteq \mathbb{F}_q^{m \times n}$ is called a *rank distance code* (RD-code for short). The minimum distance of \mathcal{C} is

$$d(C) = \min_{A,B \in \mathcal{C}, \ A \neq B} \{d(A,B)\}$$

In [11] the Singleton bound for an $m \times n$ rank metric code C with minimum rank distance d was proved:

$$#\mathcal{C} \le q^{\max\{m,n\}(\min\{m,n\}-d+1)}.$$
(1)

If this bound is achieved, then \mathcal{C} is an MRD-code. MRD-codes have various applications in communications and cryptography; see for instance [12,17]. More properties of MRDcodes can be found in [11–13,33]. When \mathcal{C} is an \mathbb{F}_q -linear subspace of $\mathbb{F}_q^{m \times n}$, we say that \mathcal{C} is an \mathbb{F}_q -linear code and the dimension $\dim_q(\mathcal{C})$ is defined to be the dimension of \mathcal{C} as a subspace over \mathbb{F}_q . If d is the minimum distance of \mathcal{C} we say that \mathcal{C} has parameters (m, n, q; d).

In [35, Section 4], the author showed that scattered linear sets of $PG(1, q^m)$ of rank m yield \mathbb{F}_q -linear MRD-codes of dimension 2m and minimum distance m - 1. Also, codes arising in this way have *middle nucleus* of order q^m (which is an invariant with respect to the equivalence on MRD-codes, see Section 6). In Proposition 6.1 we prove that every code with these parameters can be obtained from a suitable scattered linear set of rank m of $PG(1, q^m)$. The correspondence between MRD codes and linear sets of $PG(1, q^m)$ has been recently generalized in [6]. The number of non-equivalent MRD-codes obtained from a scattered linear set of $PG(1, q^m)$ of rank m was studied in [5, Section 5.4]. In [24] the author investigated in detail the relationship between linear sets of $PG(n-1, q^n)$ of rank n and \mathbb{F}_q -linear MRD-codes.

Download English Version:

https://daneshyari.com/en/article/8897869

Download Persian Version:

https://daneshyari.com/article/8897869

Daneshyari.com