

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The weighted Kirchhoff index of a graph

Hideo Mitsuhashi^a, Hideaki Morita^b, Iwao Sato^{c,*}

- ^a Department of Applied Informatics, Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584, Japan
- ^b Division of System Engineering for Mathematics, Muroran Institute

of Technology, Muroran, Hokkaido 050-8585, Japan

ARTICLE INFO

Article history: Received 25 June 2017 Accepted 29 January 2018 Available online xxxx Submitted by R. Brualdi

MSC: 05C50 05C05 15A15

Keywords: Complexity Kirchhoff index Regular covering Laplacian matrix

ABSTRACT

We consider the weighted Kirchhoff index of a graph G, and present a generalization of Somodi's Theorem on one of the Kirchhoff index of a graph. Furthermore, we give an explicit formula for the weighted Kirchhoff index of a regular covering of G in terms of that of G.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The Ihara zeta function, the complexity and the Kirchhoff index of a graph

Graphs and digraphs treated here are finite.

E-mail address: isato@oyama-ct.ac.jp (I. Sato).

Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

^{*} Corresponding author.

Let G = (V(G), E(G)) be a connected graph (possibly multiple edges and loops) with the set V(G) of vertices and the set E(G) of unoriented edges uv joining two vertices u and v. Furthermore, let n = |V(G)| and m = |E(G)| be the number of vertices and edges of G, respectively. For $uv \in E(G)$, an arc (u, v) is the oriented edge from u to v. Let D_G the symmetric digraph corresponding to G. Set $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $e = (u, v) \in D(G)$, set u = o(e) and v = t(e). Furthermore, let $e^{-1} = (v, u)$ be the inverse of e = (u, v). For $v \in V(G)$, the degree $\deg_G v = \deg_V = d_v$ of v is the number of vertices adjacent to v in G.

A path P of length n in G is a sequence $P = (e_1, \dots, e_n)$ of n arcs such that $e_i \in D(G)$, $t(e_i) = o(e_{i+1})(1 \le i \le n-1)$. If $e_i = (v_{i-1}, v_i)$ for $i = 1, \dots, n$, then we write $P = (v_0, v_1, \dots, v_{n-1}, v_n)$. Set |P| = n, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an (o(P), t(P))-path. We say that a path $P = (e_1, \dots, e_n)$ has a backtracking or a bump at $t(e_i)$ if $e_{i+1}^{-1} = e_i$ for some $i(1 \le i \le n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle $C = (e_1, \dots, e_n)$ is the cycle $C^{-1} = (e_n^{-1}, \dots, e_1^{-1})$.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \dots, e_m)$ and $C_2 = (f_1, \dots, f_m)$ are called equivalent if $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if both C and C^2 have no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_1(G, v)$ of G at a vertex v of G.

The Ihara(-Selberg) zeta function of G is defined by

$$\mathbf{Z}(G,t) = \prod_{|C|} (1 - t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G. Ihara [12] defined Ihara zeta functions of graphs, and showed that the reciprocals of Ihara zeta functions of regular graphs are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [20,21]. Hashimoto [10] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [1] presented another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Let G be a connected graph with n vertices v_1, \dots, v_n and m edges. Then the adjacency matrix $\mathbf{A}(G) = (a_{ij})$ is the square matrix such that a_{ij} is the number of edges joining v_i and v_j if v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. Let $\mathbf{D} = (d_{ij})$ be the diagonal matrix with $d_{ii} = deg_G v_i$, and $\mathbf{Q} = \mathbf{D} - \mathbf{I}$ two $2m \times 2m$ matrices. Furthermore,

Download English Version:

https://daneshyari.com/en/article/8897877

Download Persian Version:

https://daneshyari.com/article/8897877

<u>Daneshyari.com</u>