The weighted Kirchhoff index of a graph

Hideo Mitsuhashi ${ }^{\text {a }}$, Hideaki Morita ${ }^{\text {b }}$, Iwao Sato ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Applied Informatics, Faculty of Science and Engineering, Hosei
University, Koganei, Tokyo 184-8584, Japan
${ }^{\text {b }}$ Division of System Engineering for Mathematics, Muroran Institute
of Technology, Muroran, Hokkaido 050-8585, Japan
${ }^{\text {c }}$ Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

A R T I C L E I N F O

Article history:

Received 25 June 2017
Accepted 29 January 2018
Available online xxxx
Submitted by R. Brualdi

$M S C$:

05C50
05 C 05
15A15

Keywords:
Complexity
Kirchhoff index
Regular covering
Laplacian matrix

Abstract

We consider the weighted Kirchhoff index of a graph G, and present a generalization of Somodi's Theorem on one of the Kirchhoff index of a graph. Furthermore, we give an explicit formula for the weighted Kirchhoff index of a regular covering of G in terms of that of G.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The Ihara zeta function, the complexity and the Kirchhoff index of a graph

Graphs and digraphs treated here are finite.

[^0]Let $G=(V(G), E(G))$ be a connected graph (possibly multiple edges and loops) with the set $V(G)$ of vertices and the set $E(G)$ of unoriented edges $u v$ joining two vertices u and v. Furthermore, let $n=|V(G)|$ and $m=|E(G)|$ be the number of vertices and edges of G, respectively. For $u v \in E(G)$, an $\operatorname{arc}(u, v)$ is the oriented edge from u to v. Let D_{G} the symmetric digraph corresponding to G. Set $D(G)=\{(u, v),(v, u) \mid u v \in E(G)\}$. For $e=(u, v) \in D(G)$, set $u=o(e)$ and $v=t(e)$. Furthermore, let $e^{-1}=(v, u)$ be the inverse of $e=(u, v)$. For $v \in V(G)$, the degree $\operatorname{deg}_{G} v=\operatorname{deg} v=d_{v}$ of v is the number of vertices adjacent to v in G.

A path P of length n in G is a sequence $P=\left(e_{1}, \cdots, e_{n}\right)$ of n arcs such that $e_{i} \in D(G)$, $t\left(e_{i}\right)=o\left(e_{i+1}\right)(1 \leq i \leq n-1)$. If $e_{i}=\left(v_{i-1}, v_{i}\right)$ for $i=1, \cdots, n$, then we write $P=\left(v_{0}, v_{1}, \cdots, v_{n-1}, v_{n}\right)$. Set $|P|=n, o(P)=o\left(e_{1}\right)$ and $t(P)=t\left(e_{n}\right)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P=\left(e_{1}, \cdots, e_{n}\right)$ has a backtracking or a bump at $t\left(e_{i}\right)$ if $e_{i+1}^{-1}=e_{i}$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$. The inverse cycle of a cycle $C=\left(e_{1}, \cdots, e_{n}\right)$ is the cycle $C^{-1}=\left(e_{n}^{-1}, \cdots, e_{1}^{-1}\right)$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=\left(e_{1}, \cdots, e_{m}\right)$ and $C_{2}=\left(f_{1}, \cdots, f_{m}\right)$ are called equivalent if $f_{j}=e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let $[C]$ be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if both C and C^{2} have no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_{1}(G, v)$ of G at a vertex v of G.

The Ihara(-Selberg) zeta function of G is defined by

$$
\mathbf{Z}(G, t)=\prod_{[C]}\left(1-t^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G. Ihara [12] defined Ihara zeta functions of graphs, and showed that the reciprocals of Ihara zeta functions of regular graphs are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [20,21]. Hashimoto [10] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [1] presented another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Let G be a connected graph with n vertices v_{1}, \cdots, v_{n} and m edges. Then the adjacency matrix $\mathbf{A}(G)=\left(a_{i j}\right)$ is the square matrix such that $a_{i j}$ is the number of edges joining v_{i} and v_{j} if v_{i} and v_{j} are adjacent, and $a_{i j}=0$ otherwise. Let $\mathbf{D}=\left(d_{i j}\right)$ be the diagonal matrix with $d_{i i}=\operatorname{deg}_{G} v_{i}$, and $\mathbf{Q}=\mathbf{D}-\mathbf{I}$ two $2 m \times 2 m$ matrices. Furthermore,

https://daneshyari.com/en/article/8897877

Download Persian Version:
https://daneshyari.com/article/8897877

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: isato@oyama-ct.ac.jp (I. Sato).

