

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Some log-majorizations and an extension of a determinantal inequality

LINEAR ALGEBRA

Applications

Rute Lemos^{a,*}, Graça Soares^b

^a CIDMA, Mathematics Department, University of Aveiro, 3810-193 Aveiro, Portugal

^b Mathematics Center CMAT, Pole CMAT-UTAD, CEMAT-IST-UL, Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola das Ciências e Tecnologia, Quinta dos Prados, 5000-801 Vila Real, Portugal

ARTICLE INFO

Article history: Received 1 August 2017 Accepted 13 February 2018 Available online 15 February 2018 Submitted by R. Bhatia

MSC: 15A42 47A63 47A64 47A30

Keywords: Log-majorization Matrix connections and means Eigenvalues Singular values Trace and determinantal inequalities Löwner-Heinz inequality Furuta inequality Araki-Cordes inequality

ABSTRACT

An eigenvalue inequality involving a matrix connection and its dual is established, and some log-majorization type results are obtained. In particular, some eigenvalues inequalities considered by F. Hiai and M. Lin [9], an associated conjecture, and a singular values inequality by L. Zou [20] are revisited. A reformulation of the inequality det $(A+U^*B) \leq \det(A+B)$, for positive semidefinite matrices A, B, with U a unitary matrix that appears in the polar decomposition of BA, is also extended, using some known norm inequalities, associated to Furuta inequality and Araki–Cordes inequality.

@ 2018 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: rute@ua.pt (R. Lemos), gsoares@utad.pt (G. Soares). URL: http://www.utad.pt (G. Soares).

1. Introduction

Let $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$ be vectors with the components sorted in non-increasing order, that is, $x_1 \ge \cdots \ge x_n$ and $y_1 \ge \cdots \ge y_n$. We say that \mathbf{y} weakly majorizes \mathbf{x} and write $\mathbf{x} \prec_{\mathbf{w}} \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i \le \sum_{i=1}^{k} y_i, \qquad k = 1, \dots, n.$$
 (1)

If $\mathbf{x} \prec_{w} \mathbf{y}$ and equality holds in (1) for k = n, we say that \mathbf{y} majorizes \mathbf{x} , denoted by $\mathbf{x} \prec \mathbf{y}$. For \mathbf{x}, \mathbf{y} with nonnegative components, we write $\mathbf{x} \prec_{\log} \mathbf{y}$ if \mathbf{y} log-majorizes \mathbf{x} , that is,

$$\prod_{i=1}^{k} x_{i} \leq \prod_{i=1}^{k} y_{i}, \qquad k = 1, \dots, n,$$
(2)

with equality occurring in (2) when k = n.

For any real valued function f defined on an interval, containing all the components of the real vector \mathbf{x} , we adopt the notation $f(\mathbf{x}) = (f(x_1), ..., f(x_n))$. If all the components of \mathbf{x}, \mathbf{y} are positive, then $\mathbf{x} \prec_{\log} \mathbf{y}$ if and only if $\log \mathbf{x} \prec \log \mathbf{y}$, this justifying the logmajorization terminology. If f is convex, then $\mathbf{x} \prec \mathbf{y}$ implies $f(\mathbf{x}) \prec_{w} f(\mathbf{y})$. In particular, the log-majorization implies the weak majorization. Additionally, if f is an increasing and convex function, then $\mathbf{x} \prec_{w} \mathbf{y}$ implies $f(\mathbf{x}) \prec_{w} f(\mathbf{y})$. For instance, $f(t) = \ln(1 + e^{t})$ is a strictly increasing and convex function on $(0, +\infty)$. Two important resources on the topic of majorization are [2,15].

Let M_n be the algebra of $n \times n$ complex matrices and I be the identity matrix of order n. For $A \in M_n$ with real eigenvalues, we denote by $\lambda(A)$ the n-tuple of eigenvalues of A arranged as follows $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$. If $A, B \in M_n$, then AB and BA have the same eigenvalues, including multiplicities [11, Theorem 1.3.20], hence $\lambda(AB) = \lambda(BA)$.

For simplicity of notation, if $A, B \in M_n$ have real eigenvalues, then we write $A \prec_w B$ whenever $\lambda(A) \prec_w \lambda(B)$; moreover, if $A, B \in M_n$ have nonnegative eigenvalues, we write $A \prec_{\log} B$ when $\lambda(A) \prec_{\log} \lambda(B)$. Majorization is a powerful tool for establishing determinantal and matrix norm inequalities. In particular, if $A \prec_{\log} B$, then det $(I+A) \leq$ det (I+B). On the other hand, some classical determinantal inequalities can find their majorization counterparts.

For $A \in M_n$, the unique positive semidefinite square root of A^*A is denoted by |A|. For $A, B \in M_n$, Ky Fan Dominance Theorem [15] asserts that $|A| \prec_w |B|$ if and only if $|||A||| \leq |||B|||$ holds for any unitarily invariant norm $||| \cdot |||$ in M_n . We recall that a norm $||| \cdot |||$ is said to be *unitarily invariant* in M_n if |||UAV||| = |||A||| for all $A \in M_n$ and all unitary matrices $U, V \in M_n$. Considering the singular values of $A \in M_n$, that is, the eigenvalues of |A|, ordered as follows $s_1(A) \geq \cdots \geq s_n(A)$, the Ky Fan k-norms of Adefined by Download English Version:

https://daneshyari.com/en/article/8897878

Download Persian Version:

https://daneshyari.com/article/8897878

Daneshyari.com