Some log-majorizations and an extension of a determinantal inequality

Rute Lemos ${ }^{\mathrm{a}, *}$, Graça Soares ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ CIDMA, Mathematics Department, University of Aveiro, 3810-193 Aveiro, Portugal
b Mathematics Center CMAT, Pole CMAT-UTAD, CEMAT-IST-UL, Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola das Ciências e Tecnologia, Quinta dos Prados, 5000-801 Vila Real, Portugal

A R T I C L E I N F O

Article history:

Received 1 August 2017
Accepted 13 February 2018
Available online 15 February 2018
Submitted by R. Bhatia

MSC:

15A42
47A63
47A64
47A30

Keywords:
Log-majorization
Matrix connections and means
Eigenvalues
Singular values
Trace and determinantal inequalities
Löwner-Heinz inequality
Furuta inequality
Araki-Cordes inequality

A B S T R A C T

An eigenvalue inequality involving a matrix connection and its dual is established, and some log-majorization type results are obtained. In particular, some eigenvalues inequalities considered by F. Hiai and M. Lin [9], an associated conjecture, and a singular values inequality by L. Zou [20] are revisited. A reformulation of the inequality $\operatorname{det}\left(A+U^{*} B\right) \leq \operatorname{det}(A+B)$, for positive semidefinite matrices A, B, with U a unitary matrix that appears in the polar decomposition of $B A$, is also extended, using some known norm inequalities, associated to Furuta inequality and Araki-Cordes inequality.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ be vectors with the components sorted in non-increasing order, that is, $x_{1} \geq \cdots \geq x_{n}$ and $y_{1} \geq \cdots \geq y_{n}$. We say that \mathbf{y} weakly majorizes \mathbf{x} and write $\mathbf{x} \prec_{\mathrm{w}} \mathbf{y}$ if

$$
\begin{equation*}
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}, \quad k=1, \ldots, n \tag{1}
\end{equation*}
$$

If $\mathbf{x} \prec_{\mathrm{w}} \mathbf{y}$ and equality holds in (1) for $k=n$, we say that \mathbf{y} majorizes \mathbf{x}, denoted by $\mathbf{x} \prec \mathbf{y}$. For \mathbf{x}, \mathbf{y} with nonnegative components, we write $\mathbf{x} \prec_{\log } \mathbf{y}$ if $\mathbf{y} \log$-majorizes \mathbf{x}, that is,

$$
\begin{equation*}
\prod_{i=1}^{k} x_{i} \leq \prod_{i=1}^{k} y_{i}, \quad k=1, \ldots, n \tag{2}
\end{equation*}
$$

with equality occurring in (2) when $k=n$.
For any real valued function f defined on an interval, containing all the components of the real vector \mathbf{x}, we adopt the notation $f(\mathbf{x})=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. If all the components of \mathbf{x}, \mathbf{y} are positive, then $\mathbf{x} \prec_{\log } \mathbf{y}$ if and only if $\log \mathbf{x} \prec \log \mathbf{y}$, this justifying the \log majorization terminology. If f is convex, then $\mathbf{x} \prec \mathbf{y}$ implies $f(\mathbf{x}) \prec_{\mathrm{w}} f(\mathbf{y})$. In particular, the log-majorization implies the weak majorization. Additionally, if f is an increasing and convex function, then $\mathbf{x} \prec_{\mathrm{w}} \mathbf{y}$ implies $f(\mathbf{x}) \prec_{\mathrm{w}} f(\mathbf{y})$. For instance, $f(t)=\ln \left(1+e^{t}\right)$ is a strictly increasing and convex function on $(0,+\infty)$. Two important resources on the topic of majorization are [2,15].

Let M_{n} be the algebra of $n \times n$ complex matrices and I be the identity matrix of order n. For $A \in M_{n}$ with real eigenvalues, we denote by $\lambda(A)$ the n-tuple of eigenvalues of A arranged as follows $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$. If $A, B \in M_{n}$, then $A B$ and $B A$ have the same eigenvalues, including multiplicities [11, Theorem 1.3.20], hence $\lambda(A B)=\lambda(B A)$.

For simplicity of notation, if $A, B \in M_{n}$ have real eigenvalues, then we write $A \prec_{\mathrm{w}} B$ whenever $\lambda(A) \prec_{\mathrm{w}} \lambda(B)$; moreover, if $A, B \in M_{n}$ have nonnegative eigenvalues, we write $A \prec_{\log } B$ when $\lambda(A) \prec_{\log } \lambda(B)$. Majorization is a powerful tool for establishing determinantal and matrix norm inequalities. In particular, if $A \prec_{\log } B$, then $\operatorname{det}(I+A) \leq$ $\operatorname{det}(I+B)$. On the other hand, some classical determinantal inequalities can find their majorization counterparts.

For $A \in M_{n}$, the unique positive semidefinite square root of $A^{*} A$ is denoted by $|A|$. For $A, B \in M_{n}$, Ky Fan Dominance Theorem [15] asserts that $|A| \prec_{\mathrm{w}}|B|$ if and only if $\left\|\left|A\left\|\left|\left|\left||B \||\right.\right.\right.\right.\right.\right.$ holds for any unitarily invariant norm $\||\cdot|\|$ in M_{n}. We recall that a norm $\left\|\|\cdot\| \mid\right.$ is said to be unitarily invariant in M_{n} if $\|\|A V\|\|=\|\|A\|$ for all $A \in M_{n}$ and all unitary matrices $U, V \in M_{n}$. Considering the singular values of $A \in M_{n}$, that is, the eigenvalues of $|A|$, ordered as follows $s_{1}(A) \geq \cdots \geq s_{n}(A)$, the Ky Fan k-norms of A defined by

https://daneshyari.com/en/article/8897878

Download Persian Version:

https://daneshyari.com/article/8897878

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rute@ua.pt (R. Lemos), gsoares@utad.pt (G. Soares).
 URL: http://www.utad.pt (G. Soares).

