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1. Introduction

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n be vectors with the components sorted 

in non-increasing order, that is, x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn. We say that y weakly 
majorizes x and write x ≺w y if

k∑
i=1

xi ≤
k∑

i=1
yi, k = 1, . . . , n. (1)

If x ≺w y and equality holds in (1) for k = n, we say that y majorizes x, denoted by 
x ≺ y. For x, y with nonnegative components, we write x ≺log y if y log-majorizes x, 
that is,

k∏
i=1

xi ≤
k∏

i=1
yi, k = 1, . . . , n, (2)

with equality occurring in (2) when k = n.
For any real valued function f defined on an interval, containing all the components of 

the real vector x, we adopt the notation f(x) = (f(x1), ..., f(xn)). If all the components 
of x, y are positive, then x ≺log y if and only if logx ≺ logy, this justifying the log-
majorization terminology. If f is convex, then x ≺ y implies f(x) ≺w f(y). In particular, 
the log-majorization implies the weak majorization. Additionally, if f is an increasing 
and convex function, then x ≺w y implies f(x) ≺w f(y). For instance, f(t) = ln(1 + et)
is a strictly increasing and convex function on (0, +∞). Two important resources on the 
topic of majorization are [2,15].

Let Mn be the algebra of n × n complex matrices and I be the identity matrix of 
order n. For A ∈ Mn with real eigenvalues, we denote by λ(A) the n-tuple of eigenvalues 
of A arranged as follows λ1(A) ≥ · · · ≥ λn(A). If A, B ∈ Mn, then AB and BA have the 
same eigenvalues, including multiplicities [11, Theorem 1.3.20], hence λ(AB) = λ(BA).

For simplicity of notation, if A, B ∈ Mn have real eigenvalues, then we write A ≺w B

whenever λ(A) ≺w λ(B); moreover, if A, B ∈ Mn have nonnegative eigenvalues, we 
write A ≺log B when λ(A) ≺log λ(B). Majorization is a powerful tool for establishing 
determinantal and matrix norm inequalities. In particular, if A ≺log B, then det (I+A) ≤
det (I + B). On the other hand, some classical determinantal inequalities can find their 
majorization counterparts.

For A ∈ Mn, the unique positive semidefinite square root of A∗A is denoted by |A|. 
For A, B ∈ Mn, Ky Fan Dominance Theorem [15] asserts that |A| ≺w |B| if and only if 
‖ |A‖ | ≤ ‖ |B‖ | holds for any unitarily invariant norm ‖ | · ‖ | in Mn. We recall that a norm 
‖ | · ‖ | is said to be unitarily invariant in Mn if ‖ |UAV ‖ | = ‖ |A‖ | for all A ∈ Mn and all 
unitary matrices U, V ∈ Mn. Considering the singular values of A ∈ Mn, that is, the 
eigenvalues of |A|, ordered as follows s1(A) ≥ · · · ≥ sn(A), the Ky Fan k-norms of A
defined by
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