A note on factoring unitary matrices

Hartmut Führ ${ }^{\text {a }}$, Ziemowit Rzeszotnik ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany
b Mathematical Institute, University of Wroclaw, 50-384 Wroclaw, Poland

A R T I C L E I N F O

Article history:

Received 2 October 2017
Accepted 15 February 2018
Available online 21 March 2018
Submitted by R. Brualdi

MSC:

15A23

Keywords:

Factorization
Unitary matrices
Orthogonal matrices
CS decomposition

A B S T R A C T

The note concerns three factorizations of unitary matrices: a recent factorization allowing to obtain any unitary matrix of dimension $2 n$ from four unitary matrices of dimension n; the Cosine-Sine decomposition; and a new factorization decomposing a given unitary matrix into a product of two orthogonal matrices and a diagonal unitary matrix.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The problem of factoring unitary matrices was treated by many researchers (see, e.g., [3,4,6,8-10,12,13,15,16,18,20,21]). In [5] a recent factorization of unitary matrices of an even dimension has been provided. Namely, that for every matrix U in the unitary group $U(2 n)$ there exist $A, B, C, D \in U(n)$, such that

$$
U=\left[\begin{array}{cc}
A & 0 \tag{1}\\
0 & B
\end{array}\right] \frac{1}{2}\left[\begin{array}{ll}
I+C & I-C \\
I-C & I+C
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & D
\end{array}\right],
$$

[^0]where I is the identity matrix in $U(n)$. This factorization has been applied in [2] to synthesize an arbitrary quantum circuit. As indicated in [2] such synthesis requires an analysis part, that for a given $U \in U(2 n)$ allows to find $A, B, C, D \in U(n)$, so that (1) holds. The authors of [2] have resolved this problem in a regular case, that is, for $U \in U(2 n)$ written in the block form as
\[

U=\left[$$
\begin{array}{ll}
X & Y \\
W & Z
\end{array}
$$\right]
\]

with $n \times n$ matrices X, Y, W, Z that are invertible.
In this note, the general case of finding the factorization (1) is treated (see Theorem 2.1) leading to a deeper understanding of the well known Cosine-Sine decomposition (see Corollary 3.1 and Corollary 3.2).

Also, factorization (1) is extended to the odd case $U \in U(2 n+1)$ (see Theorem 4.1) and another factorization of unitary matrices is provided, that can be applied to synthesize an arbitrary unitary matrix (see Theorem 5.1).

2. Factorization of $U(2 n)$

One has the following

Theorem 2.1. Let $U \in U(2 n)$ be a unitary matrix written in the block form as

$$
U=\left[\begin{array}{ll}
X & Y \tag{2}\\
W & Z
\end{array}\right] \in U(2 n)
$$

with the $n \times n$ matrices X, Y, W, Z. Then, for every polar decomposition $X=S_{X} U_{X}$ and $Y=S_{Y} U_{Y}$, one has that

$$
U=\left[\begin{array}{ll}
A & 0 \tag{3}\\
0 & B
\end{array}\right] \frac{1}{2}\left[\begin{array}{ll}
I+C & I-C \\
I-C & I+C
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & D
\end{array}\right], \quad A, B, C, D \in U(n),
$$

with I-identity in $U(n)$ and A, B, C, D given by

$$
\begin{array}{ll}
A:=\left(S_{X}-i J S_{Y}\right) U_{X}, & B:=W-i Z U_{Y}^{*} J U_{X} \\
C:=U_{X}^{*}\left(S_{X}+i J S_{Y}\right)^{2} U_{X}, & D:=i U_{X}^{*} J U_{Y} \tag{4}
\end{array}
$$

where J is an arbitrary unitary matrix commuting with S_{X} and S_{Y}, such that $J^{2}=I$.
Proof. In the polar decompositions $X=S_{X} U_{X}$ and $Y=S_{Y} U_{Y}$ the matrices S_{X}, S_{Y} are positive semi-definite (thus Hermitian) and U_{X}, U_{Y} are unitary. Since $X X^{*}+Y Y^{*}=I$ one gets that $S_{X}^{2}+S_{Y}^{2}=I$. Therefore, S_{X} and S_{Y} commute (since positive semi-definite), and

https://daneshyari.com/en/article/8897879

Download Persian Version:

https://daneshyari.com/article/8897879

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: fuehr@matha.rwth-aachen.de (H. Führ), zioma@math.uni.wroc.pl (Z. Rzeszotnik).

