

Contents lists available at ScienceDirect

Linear Algebra and its Applications

Second homology of generalized periplectic Lie superalgebras

Zhihua Chang ^a, Jin Cheng ^b, Yongjie Wang ^{c,*}

- ^a School of Mathematics, South China University of Technology, Guangzhou, Guanqdonq, 510640, China
- ^b School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong, 250014, China
- ^c Mathematics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan

ARTICLE INFO

Article history: Received 27 July 2017 Accepted 31 January 2018 Available online 6 February 2018 Submitted by M. Bresar

MSC: 17B05 19D55

Keywords: Second homology Periplectic Lie superalgebra Universal central extension $\mathbb{Z}/2\mathbb{Z}$ -graded dihedral homology

ABSTRACT

Let $(R, \overline{\ })$ be an arbitrary unital associative superalgebra with superinvolution over a commutative ring \Bbbk with 2 invertible. The second homology of the generalized periplectic Lie superalgebra $\mathfrak{p}_m(R, \overline{\ })$ for $m\geqslant 3$ has been completely determined via an explicit construction of its universal central extension. In particular, this second homology is identified with the first $\mathbb{Z}/2\mathbb{Z}$ -graded dihedral homology of R with certain superinvolution whenever $m\geqslant 5$.

© 2018 Elsevier Inc. All rights reserved.

E-mail address: yjwang@ncts.ntu.edu.tw (Y. Wang).

^{*} Corresponding author.

1. Introduction

It is well known that the second homology of a Lie (super)algebra $\mathfrak g$ is identified with the kernel of its universal central extension, and thus classifies all central extensions of $\mathfrak g$ up to isomorphism (cf. [16,18]). They play crucial roles in the theory of Lie (super)algebras.

A remarkable work about the second homology of a Lie algebra is the nice connection between the second homology of a matrix Lie algebra and the first cyclic homology of its coordinates associative algebra established in [10]. Let A be a unital associative algebra over a commutative ring \mathbbm{k} with 2 invertible. One denotes $\mathfrak{gl}_n(A)$ the Lie algebra of all $n \times n$ -matrices with entries in A under commutator operation and $\mathfrak{sl}_n(A)$ the derived Lie subalgebra of $\mathfrak{gl}_n(A)$. It is shown in [10] that the second homology $H_2(\mathfrak{sl}_n(A))$ with $n \geq 2$ is isomorphic to the first cyclic homology $HC_1(A)$. Such an isomorphism has been extended to many other classes of Lie (super)algebras. For instance, Y. Gao showed in [6] that the second homology of elementary unitary Lie algebra $\mathfrak{cu}_n(R, ^-)$ with $n \geq 5$ is identified with the first skew-dihedral homology of $(R, ^-)$ that is a unital associative algebra with anti-involution.

In the particular case where the coordinates algebra is associative and commutative, the matrix Lie algebras under consideration are isomorphic to current Lie algebras of the form $\mathfrak{g} \otimes A$, where \mathfrak{g} is a finite dimensional (simple) Lie algebra and A is an associative commutative algebra. For instance, $\mathfrak{sl}_n(A)$ is isomorphic to $\mathfrak{sl}_n(\mathbb{k}) \otimes_{\mathbb{k}} A$ if A is commutative, while $\mathfrak{cu}_n(R,\mathrm{id})$ is isomorphic to $\mathfrak{cu}_n(\mathbb{k},\mathrm{id}) \otimes_{\mathbb{k}} R$ if R is commutative. Low-degree (co)homology of current Lie algebras were also studied intensively. In [15], K.-H. Neeb and F. Wagemann explicitly described the second cohomology of current algebras of general Lie algebras with coefficients in a trivial module. More details could be found in [15] and the references therein.

The super analogue of C. Kassel and J.L. Loday's work was obtained in [3,4]. The isomorphism between the second homology of the Lie superalgebra $\mathfrak{sl}_{m|n}(S)$ coordinated by a unital associative superalgebra S with $m+n \geqslant 5$ and the first $\mathbb{Z}/2\mathbb{Z}$ -graded cyclic homology $\mathrm{HC}_1(S)$ was established. Recent investigation [2] further gave the identification between the second homology of the ortho-symplectic Lie superalgebra $\mathfrak{osp}_{m|2n}(R, ^-)$ and the first $\mathbb{Z}/2\mathbb{Z}$ -graded skew-dihedral homology of $(R, ^-)$ for $(m, n) \neq (1, 1)$ or (2, 1), where $(R, ^-)$ is a unital associative superalgebra with superinvolution (see (2.1) for the definition). A series of deep investigations on the relationship between the homology theory of Lie algebras and the homology theory of associative algebras have been made in [12,13].

Inspired by the above developments, we aim to establish an isomorphism that is analogous to C. Kassel and J.L. Loday's isomorphism for the generalized periplectic Lie superalgebra $\mathfrak{p}_m(R, \bar{})$ coordinatized by a unital associative superalgebra $(R, \bar{})$ with superinvolution. As in Section 2, a generalized periplectic Lie superalgebra is defined as the derived sub-superalgebra of the Lie superalgebra of all skew-symmetric matrices with respect to the so-called periplectic superinvolution. It is a super analogue of a unitary Lie

Download English Version:

https://daneshyari.com/en/article/8897896

Download Persian Version:

https://daneshyari.com/article/8897896

<u>Daneshyari.com</u>