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The Jordan type of a nilpotent matrix is the partition 
giving the sizes of its Jordan blocks. We study pairs of 
partitions (P, Q), where Q = Q(P ) is the Jordan type of 
a generic nilpotent matrix A commuting with a nilpotent 
matrix B of Jordan type P . T. Košir and P. Oblak have 
shown that Q has parts that differ pairwise by at least two. 
Such partitions, which are also known as “super distinct” or 
“Rogers–Ramanujan”, are exactly those that are stable or 
“self-large” in the sense that Q(Q) = Q.
In 2012 P. Oblak formulated a conjecture concerning the 
cardinality of Q−1(Q) when Q has two parts, and proved some 
special cases. R. Zhao refined this to posit that the partitions 
in Q−1(Q) for Q = (u, u −r) with u > r > 1 could be arranged 
in an (r− 1) × (u − r) table T (Q) where the entry in the k-th 
row and �-th column has k + � parts. We prove this Table 
Theorem, and then generalize the statement to propose a Box 
Conjecture for the set of partitions Q−1(Q) for an arbitrary 
partition Q whose parts differ pairwise by at least two.
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1. Introduction

We fix an infinite field k and denote by Matn(k) the ring of n ×n matrices with entries 
in k acting on the vector space V = kn. Let P be a partition of n and denote by B = JP
the nilpotent Jordan block matrix of partition P . Let CB = {A ∈ Matn(k) | AB = BA}
be the centralizer of B in Matn(k), and let NB be the subvariety of nilpotent elements 
in CB .

There has been substantial work in the last ten years studying the map Q that takes 
P to the Jordan type Q(P ) of a generic element of NB. P. Oblak conjectured a beautiful 
recursive description of Q(P ). This conjecture remains open in general (for progress on 
it see Section 4.1, Conjecture 4.3, Remark 4.7, and [3,6,22,25,26,34]).

An almost rectangular partition is one whose largest part is at most one larger than 
its smallest part. R. Basili introduced the invariant rP , which is the smallest number 
of almost rectangular partitions whose union is P , and showed that Q(P ) has rP parts 
(Theorem 2.4). T. Košir and P. Oblak showed that if the characteristic of k is 0 then 
Q(P ) has parts that differ pairwise by at least two (Theorem 2.6). Even in cases where 
the Oblak recursive conjecture had been shown some time ago, (as rP = 2 [27], or rP = 3
[26]) the set Q−1(Q) remained mysterious. In 2012 P. Oblak made a second conjecture: 
when Q = (u, u − r) with u > r ≥ 2, then the cardinality |Q−1(Q)| = (r− 1)(u − r) [35, 
Remark 2]. In 2013, R. Zhao noticed an even stronger pattern in Q−1(Q) for such Q. 
She conjectured that there is a table T (Q) of partitions Pk,� where the number of parts 
in Pk,� is k + �: see Theorem 1.1 immediately below. We here prove a precise version, 
the Table Theorem (Theorems 3.12 and 3.19). We then propose a Box Conjecture 4.11
describing Q−1(Q) for arbitrary partitions Q whose parts differ pairwise by at least two 
(Section 4.2), and we study some special cases where Q has three parts (Section 4.3).

The question, which pairs of conjugacy classes can occur for pairs of commuting matri-
ces reduces to the case where both matrices are nilpotent. There is an extensive literature 
on commuting pairs of nilpotent matrices, including [3,19,22,25–27,34–36,39] and others, 
some of whose results we specifically cite. Connections to the Hilbert scheme are made 
in [1,2,4,10,20,31,39], and commuting nilpotent orbits occur in the study of Artinian 
algebras [4,21]. However, the study of the map P → Q(P ) seems to be, surprisingly, very 
recent, beginning with [1,2,4,25,27,34,36,39]: apparently, early workers in the area were 
more drawn to determining vector spaces of commuting matrices of maximum dimension 
(see [24,29,42] and references in the latter). There is further recent work on commuting 
r-tuples of nilpotent matrices, as [19,33,41], and these also appear to be connected to 
the study of group schemes [14,32,43,44]. There is much study of nilpotent orbits for Lie 
algebras, as in [9,11,16,37]; for generalizations of problems considered here to other Lie 
algebras than sln, see [36].

Our main result is

Theorem 1.1. Let Q = (u, u − r) where u > r ≥ 2.

i. The cardinality |Q−1(Q)| = (r − 1)(u − r).
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