

On the non-existence of antipodal cages of even girth

LINEAR

olications

Slobodan Filipovski¹

University of Primorska, Koper, Slovenia

A R T I C L E I N F O

Article history: Received 23 June 2017 Accepted 7 February 2018 Available online xxxx Submitted by R. Brualdi

MSC: 15A18 05C50 05C35

Keywords: k-regular graphs Antipodal cages Excess Multiplicities

ABSTRACT

The Moore bound M(k,g) is a lower bound on the order of k-regular graphs of girth g (denoted (k,g)-graphs). The excess e of a (k,g)-graph of order n is the difference e = n - M(k,g). A (k,g)-cage is a (k,g)-graph with the fewest possible number of vertices. A graph of diameter d is said to be antipodal if, for any vertices u, v, w such that d(u, v) = d and d(u, w) = d, it follows that d(v, w) = d or v = w. Biggs and Ito proved that any (k,g)-cage of even girth $g = 2d \ge 6$ and excess $e \le k - 2$ is a bipartite graph of diameter d + 1. In this paper we treat (k,g)-cages of even girth and excess $e \le k - 2$. Based on spectral analysis we give a relation between the eigenvalues of the adjacency matrix A and the distance matrix A_{d+1} of such cages. Applying matrix theory, we prove the non-existence of antipodal (k,g)-cages of excess e, for $k \ge e + 2 \ge 4$ and $g = 2d \ge 14$.

© 2018 Elsevier Inc. All rights reserved.

 $E\text{-}mail\ address:\ slobodan.filipovski@famnit.upr.si.$

 $^{^{1}\,}$ Supported in part by the Slovenian Research Agency (research program P1-0285 and Young Researchers Grant).

1. Introduction

A (k, g)-graph is a k-regular graph having girth g. A (k, g)-cage is a (k, g)-graph of a smallest order. The Cage Problem or Degree/Girth Problem calls for finding cages; Tutte was the first to study (k, g)-cages [17]. A (k, g)-graph exists for any pair (k, g), where $k \geq 2$ and $g \geq 3$, see [8] and [15]. It is well known that (k, g)-graphs have at least M(k, g) vertices, where

$$M(k,g) = \begin{cases} 1+k+k(k-1)+\dots+k(k-1)^{(g-3)/2}, & g \text{ odd,} \\ 2\left(1+(k-1)+\dots+(k-1)^{(g-2)/2}\right), & g \text{ even.} \end{cases}$$
(1)

If G is a (k,g)-graph of order n, then we define the *excess* e of G to be n - M(k,g). The graphs whose orders are equal to M(k,g) (graphs of excess 0) are called *Moore graphs*. Their classification has been completed except for the case k = 57 and g = 5. The Moore graphs exist if k = 2 and $g \ge 3$, g = 3 and $k \ge 2$, g = 4 and $k \ge 2$, g = 5 and k = 2, 3, 7, or g = 6, 8, 12 and a generalized n-gon of order k - 1 exists, see [1], [7] and [9].

The following three results concern the graphs of even girth.

Theorem 1.1 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth $g = 2d \ge 6$ and excess e. If $e \le k - 2$, then e is even and G is bipartite of diameter d + 1.

It is known that these graphs are partially distance-regular. To learn more about almostdistance-regular graphs, see [5]. For the next theorem, let D(k, 2) denote the incidence graph of a symmetric (v, k, 2)-design.

Theorem 1.2 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth $g = 2d \ge 6$ and excess 2. Then g = 6, G is a double-cover of D(k, 2), and $k \not\equiv 5, 7 \pmod{8}$.

The following result is based on a divisibility criterion obtained through counting g-cycles in a (k, g)-cage of excess 4.

Theorem 1.3 (Jajcayová, Filipovski and Jajcay [12]). Let $k \ge 6$ and g = 2d > 6. No (k,g)-graphs of excess 4 exist for parameters k, g satisfying at least one of the following conditions:

- 1) g = 2p, with $p \ge 5$ a prime number, and $k \not\equiv 0, 1, 2 \pmod{p}$;
- 2) $g = 4 \cdot 3^s$ such that $s \ge 4$, and k is divisible by 9 but not by 3^{s-1} ;
- 3) $g = 2p^2$, with $p \ge 5$ a prime number, and $k \not\equiv 0, 1, 2 \pmod{p}$ and k even;
- 4) g = 4p, with $p \ge 5$ a prime number, and $k \not\equiv 0, 1, 2, 3, p-2 \pmod{p}$;
- 5) $g \equiv 0 \pmod{16}$, and $k \equiv 3 \pmod{g}$.

Let $k \ge 4$, $g = 2d \ge 6$ and let G be a (k, g)-cage of excess $e \le k - 2$ and order n. Due to Theorem 1.1, we conclude that G is a bipartite graph of diameter d + 1. Let A be its

Download English Version:

https://daneshyari.com/en/article/8897901

Download Persian Version:

https://daneshyari.com/article/8897901

Daneshyari.com