On the non-existence of antipodal cages of even girth

Slobodan Filipovski ${ }^{1}$
University of Primorska, Koper, Slovenia

A R T I C L E I N F O

Article history:

Received 23 June 2017
Accepted 7 February 2018
Available online xxxx
Submitted by R. Brualdi

MSC:

15A18
05C50
05C35

Keywords:
k-regular graphs
Antipodal cages
Excess
Multiplicities

A B S T R A C T

The Moore bound $M(k, g)$ is a lower bound on the order of k-regular graphs of girth g (denoted (k, g)-graphs). The excess e of a (k, g)-graph of order n is the difference $e=n-M(k, g)$. A (k, g)-cage is a (k, g)-graph with the fewest possible number of vertices. A graph of diameter d is said to be antipodal if, for any vertices u, v, w such that $d(u, v)=d$ and $d(u, w)=d$, it follows that $d(v, w)=d$ or $v=w$. Biggs and Ito proved that any (k, g)-cage of even girth $g=2 d \geq 6$ and excess $e \leq k-2$ is a bipartite graph of diameter $d+1$. In this paper we treat (k, g)-cages of even girth and excess $e \leq k-2$. Based on spectral analysis we give a relation between the eigenvalues of the adjacency matrix A and the distance matrix A_{d+1} of such cages. Applying matrix theory, we prove the non-existence of antipodal (k, g)-cages of excess e, for $k \geq e+2 \geq 4$ and $g=2 d \geq 14$.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A (k, g)-graph is a k-regular graph having girth g. A (k, g)-cage is a (k, g)-graph of a smallest order. The Cage Problem or Degree/Girth Problem calls for finding cages; Tutte was the first to study (k, g)-cages [17]. A (k, g)-graph exists for any pair (k, g), where $k \geq 2$ and $g \geq 3$, see [8] and [15]. It is well known that (k, g)-graphs have at least $M(k, g)$ vertices, where

$$
M(k, g)= \begin{cases}1+k+k(k-1)+\cdots+k(k-1)^{(g-3) / 2}, & g \text { odd } \tag{1}\\ 2\left(1+(k-1)+\cdots+(k-1)^{(g-2) / 2}\right), & g \text { even }\end{cases}
$$

If G is a (k, g)-graph of order n, then we define the excess e of G to be $n-M(k, g)$. The graphs whose orders are equal to $M(k, g)$ (graphs of excess 0) are called Moore graphs. Their classification has been completed except for the case $k=57$ and $g=5$. The Moore graphs exist if $k=2$ and $g \geq 3, g=3$ and $k \geq 2, g=4$ and $k \geq 2, g=5$ and $k=2,3,7$, or $g=6,8,12$ and a generalized n-gon of order $k-1$ exists, see [1], [7] and [9].

The following three results concern the graphs of even girth.
Theorem 1.1 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth $g=2 d \geq 6$ and excess e. If $e \leq k-2$, then e is even and G is bipartite of diameter $d+1$.

It is known that these graphs are partially distance-regular. To learn more about almost-distance-regular graphs, see [5]. For the next theorem, let $D(k, 2)$ denote the incidence graph of a symmetric $(v, k, 2)$-design.

Theorem 1.2 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth $g=2 d \geq 6$ and excess 2 . Then $g=6, G$ is a double-cover of $D(k, 2)$, and $k \not \equiv 5,7(\bmod 8)$.

The following result is based on a divisibility criterion obtained through counting g-cycles in a (k, g)-cage of excess 4.

Theorem 1.3 (Jajcayová, Filipovski and Jajcay [12]). Let $k \geq 6$ and $g=2 d>6$. No (k, g)-graphs of excess 4 exist for parameters k, g satisfying at least one of the following conditions:

1) $g=2 p$, with $p \geq 5$ a prime number, and $k \not \equiv 0,1,2(\bmod p)$;
2) $g=4 \cdot 3^{s}$ such that $s \geq 4$, and k is divisible by 9 but not by 3^{s-1};
3) $g=2 p^{2}$, with $p \geq 5$ a prime number, and $k \not \equiv 0,1,2(\bmod p)$ and k even;
4) $g=4 p$, with $p \geq 5$ a prime number, and $k \not \equiv 0,1,2,3, p-2(\bmod p)$;
5) $g \equiv 0(\bmod 16)$, and $k \equiv 3(\bmod g)$.

Let $k \geq 4, g=2 d \geq 6$ and let G be a (k, g)-cage of excess $e \leq k-2$ and order n. Due to Theorem 1.1, we conclude that G is a bipartite graph of diameter $d+1$. Let A be its

https://daneshyari.com/en/article/8897901

Download Persian Version:

https://daneshyari.com/article/8897901

Daneshyari.com

[^0]: E-mail address: slobodan.filipovski@famnit.upr.si.
 ${ }^{1}$ Supported in part by the Slovenian Research Agency (research program P1-0285 and Young Researchers Grant).

