On line graphs with maximum energy

Eber Lenes ${ }^{\text {a }}$, Exequiel Mallea-Zepeda ${ }^{\text {b }}$, María Robbiano ${ }^{\text {c,* }}$, Jonnathan Rodríguez Z. ${ }^{\text {c }}$
a Departamento de Investigaciones, Universidad del Sinú. Elías Bechara Zainúm, Cartagena, Colombia
b Departamento de Matemática, Universidad de Tarapacá, Arica, Chile
${ }^{\text {c }}$ Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile

A R T I C L E I N F O

Article history:

Received 27 October 2017
Accepted 20 January 2018
Available online xxxx
Submitted by R. Brualdi

MSC:

05C50
15A18

Keywords:
Line graph
Adjacency matrix
Line graph energy
Vertex connectivity
Edge connectivity
Hyperenergetic graph

A B S T R A C T

For an undirected simple graph G, the line graph $\mathcal{L}(G)$ is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy $\mathcal{E}(G)$ is the sum of the absolute values of the eigenvalues of G. The vertex connectivity $\kappa(G)$ is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia $\nu^{+}(G)$ corresponds to the number of positive eigenvalues of G. Finally, the matching number $\beta(G)$ is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on $\mathcal{E}(G)$ in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained. © 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let G be an undirected simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. A graph G is bipartite if there exists a partitioning of $V(G)$ into disjoint, nonempty sets V_{1} and V_{2} such that the end vertices of each edge in G are in distinct sets V_{1}, V_{2}. In this case V_{1}, V_{2} are referred as a bipartition of G. A graph G is a complete bipartite graph if G is bipartite with bipartition V_{1} and V_{2} where each vertex in V_{1} is connected to all the vertices in V_{2}. If G is a complete bipartite graph and $\left|V_{1}\right|=p$ and $\left|V_{2}\right|=q$ the graph G is written $K_{p, q}$. The Laplacian matrix of G is the $n \times n$ matrix $L(G)=D(G)-A(G)$ where $A(G)$ and $D(G)$ are the adjacency matrix and the diagonal matrix of vertex degrees of $G[17,18,32]$, respectively. It is well known that $L(G)$ is a positive semi-definite matrix and that $(0, e)$ is an eigenpair of $L(G)$ where e is the all ones vector. The matrix $Q(G)=A(G)+D(G)$ is called the signless Laplacian matrix of G [8-10]. The eigenvalues of $A(G), L(G)$ and $Q(G)$ are called the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively. The matrices $Q(G)$ and $L(G)$ are positive semidefinite, see [38]. The spectra of $L(G)$ and $Q(G)$ coincide if and only if G is a bipartite graph, see $[5,8,17,18]$. Let

$$
\begin{aligned}
& \lambda_{n}(G) \leq \lambda_{n-1}(G) \leq \cdots \leq \lambda_{1}(G) \\
& 0 \leq q_{n}(G) \leq q_{n-1}(G) \leq \cdots \leq q_{1}(G), \quad \text { and } \\
& 0=\mu_{n}(G) \leq \mu_{n-1}(G) \leq \cdots \leq \mu_{1}(G)
\end{aligned}
$$

be the eigenvalues of $A(G), Q(G)$ and $L(G)$, respectively. The multiplicity of 0 as a signless Laplacian eigenvalue of a graph G without isolated vertices corresponds to the number of bipartite components of G, see [3]. The line graph $\mathcal{L}(G)$ is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if and only if the corresponding edges in G have a common vertex [24]. The energy of the line graph of a graph G and its relations with the other graph energies were earlier studied in [12,21]. The spectral radius of $Q(G)$ is called the signless Laplacian index of G and it is usually denoted by $q_{1}(G)$. From Perron-Frobenius Theory for nonnegative matrices, it follows that if G is a connected graph then $q_{1}(G)$ is a simple eigenvalue of $Q(G)$.

We recall the notion of the join operation of graphs. Given two vertex disjoint graphs G_{1} and G_{2}, the join of G_{1} and G_{2} is the graph $G=G_{1} \vee G_{2}$ such that $V(G)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

The join operation of two vertex disjoint graphs can be generalized as follows [6,7]. Let H be a graph of order k. Let $V(H)=\{1,2, \ldots, k\}$. Let $\mathcal{F}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ be a set of pairwise vertex disjoint graphs. Each vertex $j \in V(H)$ is assigned to the graph $G_{j} \in \mathcal{F}$. Let G be the graph obtained from the graphs $G_{1}, G_{2}, \ldots, G_{k}$ and the edges connecting each vertex of G_{i} with all the vertices of G_{j} for all edge $i j \in E(H)$. That is, G is the graph with vertex set

https://daneshyari.com/en/article/8897907

Download Persian Version:

https://daneshyari.com/article/8897907

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: elenes@unisinucartagena.edu.co (E. Lenes), emallea@uta.cl (E. Mallea-Zepeda), mrobbiano@ucn.cl (M. Robbiano), jrodriguez01@ucn.cl (J. Rodríguez Z.).

