Sharp upper bounds on the distance energies of a graph

Roberto C. Díaz, Oscar Rojo*
Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile

A R T I C L E I N F O

Article history:

Received 25 May 2017
Accepted 13 January 2018
Available online 2 February 2018
Submitted by R. Brualdi

MSC:

05C50
15A42
Keywords:
Distance matrix
Vertex transmission
Distance energy
Distance Laplacian energy
Distance signless Laplacian energy

A B S T R A C T

In this paper, for a simple undirected connected graph, sharp upper bounds on the distance energy, distance Laplacian energy and distance signless Laplacian energy are obtained. The graphs attaining the corresponding upper bound are characterized.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V(G), E(G))$ be a simple undirected graph on n vertices with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $D(G)$ be the diagonal matrix of order n whose (i, i)-entry is the degree of the vertex v_{i} of G and let $A(G)$ be the adjacency matrix

[^0]of G. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are the Laplacian and signless Laplacian matrix of G, respectively. The matrices $L(G)$ and $Q(G)$ are both positive semidefinite and $(0, \mathbf{1})$ is an eigenpair of $L(G)$ where $\mathbf{1}$ is the all ones vector.

Let

$$
\lambda_{1}(G) \geq \lambda_{2}(G) \geq \ldots \geq \lambda_{n}(G)
$$

be the eigenvalues of $A(G)$. They are called the eigenvalues of G. Let

$$
\mu_{1}(G) \geq \mu_{2}(G) \geq \ldots \geq \mu_{n}(G)=0
$$

and

$$
q_{1}(G) \geq q_{2}(G) \geq \ldots \geq q_{n}(G)
$$

be the eigenvalues of $L(G)$ and $Q(G)$, respectively. They are called the Laplacian eigenvalues of G and the signless Laplacian eigenvalues of G, respectively. It is well known that the Laplacian eigenvalues and signless Laplacian eigenvalues of G coincide if and only if G is a bipartite graph.

The Frobenius norm of an $n \times n$ matrix $M=\left(m_{i, j}\right)$ is

$$
\|M\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|m_{i, j}\right|^{2}}
$$

We recall if M is a normal matrix then $\|M\|_{F}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}(M)\right|^{2}$ where $\lambda_{1}(M), \ldots, \lambda_{n}(M)$ are the eigenvalues of M.

Throughout this paper, we assume that G is a connected graph of order n and K_{n} denotes the complete graph on n vertices.

The distance between $u, v \in V(G)$ for a connected graph G, denoted by $d(u, v)$, is the length of the shortest path connecting u and v. The Wiener index $W(G)$ of the graph G is

$$
W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)
$$

and the transmission $\operatorname{Tr}(v)$ of a vertex $v \in V(G)$ is the sum of the distances from v to all other vertices of G, that is,

$$
\operatorname{Tr}(v)=\sum_{u \in V(G)} d(v, u) .
$$

The graph G is said to be k-transmission regular if $\operatorname{Tr}(v)=k$ for each vertex $v \in$ $V(G)$. The distance matrix $\mathcal{D}(G)=\left(d_{i, j}\right)$ of G is an $n \times n$ matrix indexed by the vertices

https://daneshyari.com/en/article/8897909

Download Persian Version:

https://daneshyari.com/article/8897909

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rdiaz01@ucn.cl (R.C. Díaz), orojo@ucn.cl (O. Rojo).

