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In this paper, for a simple undirected connected graph, sharp 
upper bounds on the distance energy, distance Laplacian en-
ergy and distance signless Laplacian energy are obtained. The 
graphs attaining the corresponding upper bound are charac-
terized.
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph on n vertices with vertex set 
V (G) = {v1, . . . , vn} and edge set E(G). Let D(G) be the diagonal matrix of order n
whose (i, i)-entry is the degree of the vertex vi of G and let A (G) be the adjacency matrix 
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of G. The matrices L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are the Laplacian 
and signless Laplacian matrix of G, respectively. The matrices L(G) and Q(G) are both 
positive semidefinite and (0,1) is an eigenpair of L (G) where 1 is the all ones vector.

Let

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G)

be the eigenvalues of A(G). They are called the eigenvalues of G. Let

μ1(G) ≥ μ2(G) ≥ . . . ≥ μn(G) = 0

and

q1(G) ≥ q2(G) ≥ . . . ≥ qn(G)

be the eigenvalues of L(G) and Q(G), respectively. They are called the Laplacian eigen-
values of G and the signless Laplacian eigenvalues of G, respectively. It is well known
that the Laplacian eigenvalues and signless Laplacian eigenvalues of G coincide if and 
only if G is a bipartite graph.

The Frobenius norm of an n × n matrix M = (mi,j) is

‖M‖F =

√√√√ n∑
i=1

n∑
j=1

|mi,j |2.

We recall if M is a normal matrix then ‖M‖2
F =

∑n
i=1 |λi(M)|2 where λ1(M), . . . , λn(M)

are the eigenvalues of M .
Throughout this paper, we assume that G is a connected graph of order n and Kn

denotes the complete graph on n vertices.
The distance between u, v ∈ V (G) for a connected graph G, denoted by d(u, v), is the 

length of the shortest path connecting u and v. The Wiener index W (G) of the graph G
is

W (G) = 1
2

∑
u,v∈V (G)

d(u, v)

and the transmission Tr(v) of a vertex v ∈ V (G) is the sum of the distances from v to 
all other vertices of G, that is,

Tr(v) =
∑

u∈V (G)

d(v, u).

The graph G is said to be k-transmission regular if Tr(v) = k for each vertex v ∈
V (G). The distance matrix D(G) = (di,j) of G is an n ×n matrix indexed by the vertices 
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