Principal eigenvectors and spectral radii of uniform hypergraphs

Haifeng Li^{a}, Jiang Zhou ${ }^{\mathrm{b}}$, Changjiang Bu ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ College of Automation, Harbin Engineering University, Harbin 150001, PR China
${ }^{\text {b }}$ College of Science, Harbin Engineering University, Harbin 150001, PR China

A R T I C L E I N F O

Article history

Received 1 August 2016
Accepted 11 January 2018
Submitted by R. Brualdi

MSC:

05C50
05C65
15A69
15A18

Keywords:
Hypergraph
Spectral radius
Principal eigenvector

Abstract

In this paper, some inequalities among the principal eigenvector, spectral radius and vertex degrees of a connected uniform hypergraph are established. Necessary and sufficient conditions of equalities holding are presented, which are related to the regularity of a hypergraph. Furthermore, we present some bounds on the spectral radius for a connected irregular uniform hypergraph in terms of some parameters, such as principal ratio, maximum degree, diameter, and the number of vertices and edges.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, let $[n]=\{1,2, \ldots, n\}$. An order m dimension n tensor $\mathcal{A}=$ $\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ is a multidimensional array with n^{m} entries, where $i_{j} \in[n], j \in[m]$. When $m=2, \mathcal{A}$ is an $n \times n$ matrix. Let $\mathbb{C}^{[m, n]}$ be the set of order m dimension n tensors

[^0]over the complex field \mathbb{C}, and \mathbb{C}^{n} be the set of n-vectors over the complex field \mathbb{C}. For $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}$, if all the entries $a_{i_{1} i_{2} \cdots i_{m}} \geq 0$, then \mathcal{A} is called nonnegative.

In 2005, Qi [22] and Lim [14] defined the eigenvalues of tensors, respectively. For $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n}, \mathcal{A} x^{m-1}$ is an n-vector whose the i-th component is

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

If there exists a number $\lambda \in \mathbb{C}$ and a nonzero vector $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n}$ such that

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

then λ is called an eigenvalue of \mathcal{A}, x is called an eigenvector of \mathcal{A} corresponding to λ, where $x^{[m-1]}=\left(x_{1}^{m-1}, x_{2}^{m-1}, \ldots, x_{n}^{m-1}\right)^{\mathrm{T}}$. The spectral radius $\rho(\mathcal{A})=\max \{|\lambda|: \lambda \in$ $\sigma(\mathcal{A})\}$, where $\sigma(\mathcal{A})$ is the set of all eigenvalues of \mathcal{A}.

A hypergraph G is a pair $(V(G), E(G))$, where $E(G) \subseteq P(V(G))$ and $P(V(G))$ stands for the power set of $V(G)$. The elements of $V(G)$ are called the vertices and the elements of $E(G)$ are called the edges (see [1]). If each edge of G contains exactly k distinct vertices, then G is called k-uniform. When $k=2, G$ is a graph. For all $i \in V(G), E_{i}(G)$ denotes the set of edges containing i, and $d_{i}=\left|E_{i}(G)\right|$ denotes the degree of $i, \Delta=\max _{i}\left\{d_{i}\right\}$ and $\delta=\min _{i}\left\{d_{i}\right\}$. If $\Delta=\delta$, then G is called regular. The adjacency tensor [6] of a k-uniform hypergraph G, denoted by \mathcal{A}_{G}, is an order k dimension $|V(G)|$ nonnegative tensor with entries

$$
a_{i_{1} i_{2} \cdots i_{k}}= \begin{cases}\frac{1}{(k-1)!}, & \text { if }\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Eigenvalues of \mathcal{A}_{G} are called eigenvalues of G, the spectral radius of \mathcal{A}_{G} is called the spectral radius of G, denoted by $\rho(G)$.

For k-uniform hypergraph G with n vertices, it is connected if and only if \mathcal{A}_{G} is nonnegative weakly irreducible [8,21,27]. By the Perron-Frobenius theorem [27], $\rho(G)$ is an eigenvalue of G and there exists a unique positive eigenvector $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ corresponding to $\rho(G)$ with $\sum_{i=1}^{n} x_{i}^{k}=1$, which is called the principal eigenvector of G. The maximum and minimum entries of x are denoted by $x_{\max }$ and $x_{\min }$, respectively. The parameter $\gamma=\frac{x_{\max }}{x_{\min }}$ is called the principal ratio of G (see [17]). For $e=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in$ $E(G)$, let $x^{e}=\prod_{j=1}^{k} x_{i_{j}}$ and $x^{e \backslash\left\{i_{1}\right\}}=\prod_{j=2}^{k} x_{i_{j}}$.

The principal eigenvector of a connected graph is one of centrality metrics [11]. Let G be a connected irregular graph. Investigations have been conducted to the relationship between $x_{\max }$ and the structure of a connected graph [20], bounds on $\gamma, x_{\max }, x_{\min }$

https://daneshyari.com/en/article/8897930

Download Persian Version:
https://daneshyari.com/article/8897930

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

