

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Some remarks on the complex J-symmetric eigenproblem

LINEAR Algebra

Applications

Peter Benner^a, Heike Faßbender^{b,*}, Chao Yang^c

 ^a Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
^b AG Numerik, TU Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany

^c Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

A R T I C L E I N F O

Article history: Received 19 July 2015 Accepted 10 January 2018 Submitted by C. Mehl

MSC: 65F15

Keywords: Complex J-symmetric eigenproblem Real Hamiltonian matrix Complex Hamiltonian matrix Structure-preserving SR algorithm

ABSTRACT

The eigenproblem for complex J-symmetric matrices $H_C = \begin{bmatrix} A & C \\ D & -A^T \end{bmatrix}$, $A, C = C^T$, $D = D^T \in \mathbb{C}^{n \times n}$ is considered. A proof of the existence of a transformation to the complex J-symmetric Schur form proposed in [21] is given. The complex symplectic unitary QR decomposition and the complex symplectic SR decomposition are discussed. It is shown that a QR-like method based on the complex symplectic unitary QR decomposition is not feasible here. A complex symplectic SR algorithm is presented which can be implemented such that one step of the SR algorithm can be carried out in $\mathcal{O}(n)$ arithmetic operations. Based on this, a complex symplectic Lanczos method can be derived. Moreover, it is discussed how the $2n \times 2n$ complex J-symmetric matrix H_C can be embedded in a $4n \times 4n$ real Hamiltonian matrix.

@ 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.laa.2018.01.014} 0024-3795 \ensuremath{\oslash}\ 0218 \ Elsevier \ Inc. \ All \ rights \ reserved.$

E-mail address: h.fassbender@tu-braunschweig.de (H. Faßbender).

1. Introduction

The basic algebraic structures and properties of the following classes of matrices

$H_C \in \mathbb{C}^{2n \times 2n}$	complex J -symmetric	$JH_C = (JH_C)^T$
$H_H \in \mathbb{C}^{2n \times 2n}$	J-Hermitian	$JH_H = (JH_H)^H$
	(complex Hamiltonian)	
$H \in \mathbb{R}^{2n \times 2n}$	real Hamiltonian	$JH = (JH)^H = (JH)^T$

are well-known, see, e.g., [11,18,19]. Here $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$ and I is the $n \times n$ identity matrix. X^T denotes transposition, $Y = X^T$, $y_{ij} = x_{ji}$, no matter whether X is real or complex, while X^H denotes conjugate transposition, $Y = X^H$, $y_{ij} = \overline{x_{ji}}$. In case $H \in \mathbb{R}^{2n \times 2n}$, the structures coalesce, H is complex J-symmetric and J-Hermitian. Each of the three classes of matrices forms a Lie algebra. The eigenvalues of real Hamiltonian matrices H and of complex J-symmetric matrices H_C display a symmetry [19]: they appear in pairs $(\lambda, -\lambda)$. If x is the right eigenvector corresponding to λ , $Bx = \lambda x$, then Jx is the left eigenvector corresponding to the eigenvalue $-\lambda$ of B = H or $B = H_C$, $(Jx)^T B = -\lambda(Jx)^T$. Moreover, the matrices in these two classes can always be written in block form $\begin{bmatrix} A & C \\ D & -A^T \end{bmatrix}$ with $C = C^T$, $D = D^T$, where either $A, C, D \in \mathbb{R}^{n \times n}$ or $A, C, D \in \mathbb{C}^{n \times n}$. In contrast, complex Hamiltonian matrices have a block form $\begin{bmatrix} A & C \\ D & -A^H \end{bmatrix}$ with $A, C = C^H$, $D = D^H \in \mathbb{C}^{n \times n}$; the eigenvalues display the symmetry $(\lambda, -\overline{\lambda})$.

A particular instance of the *J*-symmetric eigenproblem arises in the context of estimating the absorption spectra in molecules and solids using the Bethe–Salpeter equations [22,23] for determining electronic excitation energies. Solving the Bethe–Salpeter equations numerically, the eigenvalue problem $H_{BS}x = \lambda x$ for complex matrices

$$H_{BS} = \begin{bmatrix} A & -D^H \\ D & -A^T \end{bmatrix} \in \mathbb{C}^{2n \times 2n}, \quad A = A^H, D = D^T \in \mathbb{C}^{n \times n}$$
(1)

arises. The matrices H_{BS} belong to the slightly more general class of matrices of complex J-symmetric matrices

$$H_C = \begin{bmatrix} A & C \\ D & -A^T \end{bmatrix} \in \mathbb{C}^{2n \times 2n}, \quad A, C = C^T, D = D^T \in \mathbb{C}^{n \times n}.$$
(2)

As already discussed, the eigenvalues of H_C display the symmetry $(\lambda, -\lambda)$. Clearly, H_{BS} inherits these properties. There is even more structure in the eigenvalues and eigenvectors of H_{BS} .

Theorem 1. Eigenvalues of H_{BS} that are real or purely imaginary appear in pairs $(\lambda, -\lambda)$, other eigenvalues appear in quadruples $(\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda})$. Moreover, for $\lambda \in \mathbb{C}$, $H_{BS}x = \lambda x$ implies $H_{BS}K\overline{x} = -\overline{\lambda}K\overline{x}$ and $H_{BS}y = -\lambda y$ implies $H_{BS}K\overline{y} = \overline{\lambda}K\overline{y}$ with

Download English Version:

https://daneshyari.com/en/article/8897939

Download Persian Version:

https://daneshyari.com/article/8897939

Daneshyari.com