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We show that the tensor rank of tensor product of two three-
qubit W states is not less than eight. Combining this result 
with the recent result of M. Christandl, A.K. Jensen, and 
J. Zuiddam that the tensor rank of tensor product of two 
three-qubit W states is at most eight, we deduce that the 
tensor rank of tensor product of two three-qubit W states is 
eight. We also construct the upper bound of the tensor rank 
of tensor product of many three-qubit W states.
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1. Introduction

Let H be an n-dimensional Hilbert space. We denote by a bold letter x an element 
in H. For compactness of the exposition we adopt the following terminology. A nonzero 
vector x is called a state, while a normalized state is a vector x of norm one. For a 
positive integer d > 1 a d-partite state is the Hilbert space H = H1 ⊗ · · · ⊗ Hd, where 
dim Hi = ni for i ∈ [d] = {1, . . . , d}. We denote ⊗d

i=1Hi = H. In the case H1 = . . . = Hd

we denote H by ⊗dH1. An unentangled state is a rank one tensor x1 ⊗ · · · ⊗ xd, where 
xi �= 0, i ∈ [d]. We denote by a calligraphic letter X an element of ⊗d

i=1Hi. The rank 
of a state X , denoted by rank X , is the minimal number r in the decomposition of X
as a sum of unentangled states X =

∑r
j=1 ⊗d

i=1xi,j . Thus rank X is a measurement of 
entanglement of a state. There are other measure of entanglement of normalized states, 
as geometrical measure of entanglement [1,2] or the nuclear norm of X [3].

The entanglement of bipartite states, i.e. d = 2, is well understood, since H1⊗H2 can 
be identified with the space of dim H1×dim H2 matrices. In this case rank X is the rank 
of the corresponding matrix, and the maximal value of this rank is min(dim H1, dim H2). 
To emphasize that we are dealing with bipartite states, i.e. matrices, we will usually
denote by X the matrix representing the bipartite state. The first interesting case is the 
3-qubit states: d = 3, dim H1 = dim H2 = dim H3 = 2. There are two kinds of entangled 
states which can not be decomposed as a product of an unentangled state with a two 
qubit entangled state: the GHZ and W states whose ranks are 2 and 3 respectively. The 
closure of the orbit of GHZ under the action of GL(C2) ×GL(C2) ×GL(C2) is ⊗3H1, 
and its rank is two. The W state has the maximum rank three. We will usually denote 
the W state by the tensor W.

We now consider another d′ partite state Hilbert space H′ = ⊗d′

i′=1H′
i′ , where 

dim H′
i′ = n′

i′ , i
′ ∈ [d′]. We define two different tensor products of H and H′. The first 

product is the tensor product H ⊗H′. It has the following physical interpretation. The d
and d′ partite tensor products H and H′ correspond to two sets of parties {P1, . . . , Pd}
and {Q1, . . . , Qd′}. Then H ⊗ H′ corresponds to d + d′ party {P1, . . . , Pd, Q1, . . . , Qd′}. 
The second tensor product, which we call the Kronecker product, is defined as follows. As-
sume that d ≤ d′. (We can always achieve this by permuting the factors H and H′.) Then

H ⊗K H′ = (⊗d
i=1(Hi ⊗ H′

i)) ⊗ (⊗d′

i′=d+1H′
i′).

(If d′ = d the second tensor product is omitted.) The physical interpretation of the 
Kronecker product is as follows. The d and d′ partite tensor products H and H′ corre-
spond to two sets of parties {P1, . . . , Pd} and {P1, . . . , Pd′} respectively. Then H ⊗K H′

corresponds to the party {P1, . . . , Pd′} where each person Pi has the space Hi ⊗ H′
i for 

i ∈ [d]. For i′ > d the person Pi′ has the space H′
i′ . Note that for d = d′ = 2 H ⊗K H′

corresponds to the Kronecker product two matrix spaces. Suppose that H′ = H. Then 
⊗pH = H⊗p is pd partite system corresponding to p tensor products of H. Furthermore, 
⊗p

KH = ⊗d
i=1(⊗pHi).
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