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Let (A, B) be a pair of skew-symmetric matrices over a field 
of characteristic not 2. Its regularization decomposition is a 
direct sum

(A,B) ⊕ (A1, B1) ⊕ · · · ⊕ (At, Bt)

that is congruent to (A, B), in which (A, B) is a pair of 
nonsingular matrices and (A1, B1), . . . , (At, Bt) are singular 
indecomposable canonical pairs of skew-symmetric matrices 
under congruence. We give an algorithm that constructs a 
regularization decomposition. We also give a constructive 
proof of the known canonical form of (A, B) under congruence 
over an algebraically closed field of characteristic not 2.
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1. Introduction

We give an algorithm that for each pair of skew-symmetric matrices constructs its 
regularization decomposition.

Two pairs (A, B) and (A′, B′) of square matrices of the same size are congruent if 
there exists a nonsingular matrix S such that

S(A,B)ST := (SAST , SBST ) = (A′, B′).

A direct sum of pairs (A, B) and (A′, B′) is the pair

(A,B) ⊕ (A′, B′) :=
([

A 0
0 A′

]
,

[
B 0
0 B′

])
.

A regularizing decomposition of a pair (A, B) of skew-symmetric matrices over a field of 
characteristic not 2 is a direct sum

(A,B) ⊕ (A1, B1) ⊕ · · · ⊕ (At, Bt) (1)

that is congruent to (A, B), in which (A, B) is a pair of nonsingular matrices of the same 
size and each (Ai, Bi) is one of the pairs

Jn :=
([

0 In
−In 0

]
,

[
0 Jn(0)

−Jn(0)T 0

])
, (2)

Kn :=
([

0 Jn(0)
−Jn(0)T 0

]
,

[
0 In

−In 0

])
,

Ln :=
([

0 Ln

−LT
n 0

]
,

[
0 Rn

−RT
n 0

])
, n = 1, 2, . . . , (3)

where Jn(0) is the n × n singular Jordan block and

Ln :=

⎡
⎢⎣

1 0 0
. . . . . .

0 1 0

⎤
⎥⎦ , Rn :=

⎡
⎢⎣

0 1 0
. . . . . .

0 0 1

⎤
⎥⎦ ((n− 1)-by-n). (4)

In particular, L1 = ([0], [0]). The canonical form of (A, B) under congruence (see (5)) 
ensures that (A, B)—the regular part of (A, B)—is determined up to congruence, and 
(A1, B1), . . . , (At, Bt)—the singular summands—are determined uniquely up to permu-
tations.

In Section 2, we give a regularization algorithm that uses elementary transformations 
of matrices and for each pair of skew-symmetric matrices over a field of characteristic 
not 2 constructs its regularization decomposition under congruence. Regularization al-
gorithms were constructed for matrix pencils by Van Dooren [16], for cycles of linear 
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