Reduction of a pair of skew-symmetric matrices to its canonical form under congruence

Victor A. Bovdi, ${ }^{\text {a,* }}$, Tatiana G. Gerasimova ${ }^{\text {b }}$, Mohamed A. Salim ${ }^{\text {a }}$, Vladimir V. Sergeichuk ${ }^{\text {b }}$
${ }^{\text {a }}$ United Arab Emirates University, Al Ain, United Arab Emirates
${ }^{\text {b }}$ Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

A R T I C L E I N F O

Article history:

Received 10 September 2017
Accepted 15 December 2017
Available online 20 December 2017
Submitted by R.A. Horn

$M S C$:

15A21
15A22
15A63
51A50

Keywords:
Pair of skew-symmetric matrices
Regularization decomposition
Canonical form

A B S T R A C T

Let (A, B) be a pair of skew-symmetric matrices over a field of characteristic not 2 . Its regularization decomposition is a direct sum

$$
(\underline{\underline{A}}, \underline{\underline{B}}) \oplus\left(A_{1}, B_{1}\right) \oplus \cdots \oplus\left(A_{t}, B_{t}\right)
$$

that is congruent to (A, B), in which $(\underline{\underline{A}}, \underline{\underline{B}})$ is a pair of nonsingular matrices and $\left(A_{1}, B_{1}\right), \ldots,\left(A_{t}, B_{t}\right)$ are singular indecomposable canonical pairs of skew-symmetric matrices under congruence. We give an algorithm that constructs a regularization decomposition. We also give a constructive proof of the known canonical form of (A, B) under congruence over an algebraically closed field of characteristic not 2 .
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

We give an algorithm that for each pair of skew-symmetric matrices constructs its regularization decomposition.

Two pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ of square matrices of the same size are congruent if there exists a nonsingular matrix S such that

$$
S(A, B) S^{T}:=\left(S A S^{T}, S B S^{T}\right)=\left(A^{\prime}, B^{\prime}\right)
$$

A direct sum of pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ is the pair

$$
(A, B) \oplus\left(A^{\prime}, B^{\prime}\right):=\left(\left[\begin{array}{cc}
A & 0 \\
0 & A^{\prime}
\end{array}\right],\left[\begin{array}{cc}
B & 0 \\
0 & B^{\prime}
\end{array}\right]\right) .
$$

A regularizing decomposition of a pair (A, B) of skew-symmetric matrices over a field of characteristic not 2 is a direct sum

$$
\begin{equation*}
(\underline{\underline{A}}, \underline{\underline{B}}) \oplus\left(A_{1}, B_{1}\right) \oplus \cdots \oplus\left(A_{t}, B_{t}\right) \tag{1}
\end{equation*}
$$

that is congruent to (A, B), in which $(\underline{\underline{A}}, \underline{\underline{B}})$ is a pair of nonsingular matrices of the same size and each $\left(A_{i}, B_{i}\right)$ is one of the pairs

$$
\begin{align*}
\mathcal{J}_{n} & :=\left(\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & J_{n}(0) \\
-J_{n}(0)^{T} & 0
\end{array}\right]\right), \tag{2}\\
\mathcal{K}_{n} & :=\left(\left[\begin{array}{cc}
0 & J_{n}(0) \\
-J_{n}(0)^{T} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]\right), \\
\mathcal{L}_{n} & :=\left(\left[\begin{array}{cc}
0 & L_{n} \\
-L_{n}^{T} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & R_{n} \\
-R_{n}^{T} & 0
\end{array}\right]\right), \quad n=1,2, \ldots, \tag{3}
\end{align*}
$$

where $J_{n}(0)$ is the $n \times n$ singular Jordan block and

$$
L_{n}:=\left[\begin{array}{cccc}
1 & 0 & & 0 \tag{4}\\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right], \quad R_{n}:=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
0 & & 0 & 1
\end{array}\right] \quad((n-1) \text {-by- } n) .
$$

In particular, $\mathcal{L}_{1}=([0],[0])$. The canonical form of (A, B) under congruence (see (5)) ensures that $(\underline{\underline{A}}, \underline{\underline{B}})$ - the regular part of (A, B)-is determined up to congruence, and $\left(A_{1}, B_{1}\right), \ldots,\left(A_{t}, B_{t}\right)$-the singular summands-are determined uniquely up to permutations.

In Section 2, we give a regularization algorithm that uses elementary transformations of matrices and for each pair of skew-symmetric matrices over a field of characteristic not 2 constructs its regularization decomposition under congruence. Regularization algorithms were constructed for matrix pencils by Van Dooren [16], for cycles of linear

https://daneshyari.com/en/article/8897945

Download Persian Version:

https://daneshyari.com/article/8897945

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: vbovdi@gmail.com, v.bodi@uaeu.ac.ae (V.A. Bovdi), gerasimova@imath.kiev.ua (T.G. Gerasimova), msalim@uaeu.ac.ae (M.A. Salim), sergeich@imath.kiev.ua (V.V. Sergeichuk).

