A resolution of Paz's conjecture in the presence of a nonderogatory matrix

Alexander Guterman ${ }^{\text {a,1 }}$, Thomas Laffey ${ }^{\text {b }}$, Olga Markova ${ }^{\text {a,1 }}$,
Helena Šmigoc ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Algebra, Faculty of Mechanics and Mathematics, M. V. Lomonosov
Moscow State University, Moscow 119991, Russia
${ }^{\text {b }}$ School of Mathematics and Statistics, University College Dublin, Ireland

A R T I C L E I N F O

Article history:

Received 8 August 2017
Accepted 2 January 2018
Available online 6 January 2018
Submitted by S. Kirkland

$M S C$:

15A30
13 E 10
16S50

Keywords:
Finite-dimensional algebras
Lengths of sets and algebras
Paz's conjecture
Nonderogatory matrices

A B S T R A C T

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field \mathbb{F} and let \mathcal{S} be a generating set of $M_{n}(\mathbb{F})$ as an \mathbb{F}-algebra. The length of a finite generating set \mathcal{S} of $M_{n}(\mathbb{F})$ is the smallest number k such that words of length not greater than k generate $M_{n}(\mathbb{F})$ as a vector space. It is a long standing conjecture of Paz that the length of any generating set of $M_{n}(\mathbb{F})$ cannot exceed $2 n-2$. We prove this conjecture under the assumption that the generating set \mathcal{S} contains a nonderogatory matrix. In addition, we find linear bounds for the length of generating sets that include a matrix with some conditions on its Jordan canonical form. Finally, we investigate cases when the length $2 n-2$ is achieved.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let \mathcal{A} be an associative finite-dimensional algebra over an arbitrary field \mathbb{F} and let $\mathcal{S}=\left\{a_{1}, \ldots, a_{k}\right\}$ denote a finite generating system of this algebra. We define the length function of a generating set and of the algebra as follows.

Definition 1.1. A word in \mathcal{S} is a product of elements from \mathcal{S}. The length of the word $a_{i_{1}} \ldots a_{i_{t}}$ where $a_{i_{j}} \in \mathcal{S}$ is equal to t. Furthermore, if A is a unitary algebra, we define 1 to be a word of length 0 (the empty word).

For $i \geq 0$ we denote \mathcal{S}^{i} to be the set of all words of length not greater than i over \mathcal{S}, and $\mathcal{L}_{i}(\mathcal{S})=\left\langle\mathcal{S}^{i}\right\rangle$, where $\langle\mathcal{X}\rangle$ denotes the linear span of a set \mathcal{X} in a vector space over \mathbb{F}. Note that $\mathcal{L}_{0}(\mathcal{S})=\left\langle 1_{\mathcal{A}}\right\rangle=\mathbb{F}$ for unitary algebras, and $\mathcal{L}_{0}(\mathcal{S})=0$, otherwise. Let

$$
\mathcal{L}(\mathcal{S})=\bigcup_{i=0}^{\infty} \mathcal{L}_{i}(\mathcal{S})
$$

be the linear span of all words in the alphabet \mathcal{S}.
Definition 1.2. A word w of length l is said to be reducible if $w \in \mathcal{L}_{i}(\mathcal{S})$ for some $i<l$.
Definition 1.3. The length of a generating system \mathcal{S} for the finite-dimensional algebra \mathcal{A} is the number $l(\mathcal{S})=\min \left\{k \in \mathbb{Z}_{+}: \mathcal{L}_{k}(\mathcal{S})=\mathcal{A}\right\}$, and the length of the algebra \mathcal{A} is defined to be the number $l(\mathcal{A})=\max \{l(\mathcal{S}): \mathcal{L}(\mathcal{S})=\mathcal{A}\}$.

Denote by $M_{n}(\mathbb{F})$ the algebra of $n \times n$ matrices over the field \mathbb{F}, and denote by $M_{n, m}(\mathbb{F})$ the space of $n \times m$ matrices over \mathbb{F}. We define the following notation for some special matrices from $M_{n}(\mathbb{F})$:

- By $E_{i j}$ we denote (i, j)-th matrix unit, that is, the matrix with 1 in (i, j)-th position and zeros elsewhere. (We do not specify the size of the matrix, as it will be clear from the context.)
- By I_{n} and O_{n} we denote the identity matrix and the zero matrix in $M_{n}(\mathbb{F})$.
- For any $\lambda \in \mathbb{F}$ we set $J_{n}(\lambda)=\lambda I_{n}+\sum_{i=1}^{n-1} E_{i, i+1} \in M_{n}(\mathbb{F})$, that is, the Jordan block of size n corresponding to the eigenvalue λ, and define $J_{n}=J_{n}(0)$.

If the size of the matrix is clear, we denote the aforementioned matrices as I, O and J, correspondingly.

Furthermore, $e_{i}, i=1, \ldots, n$, will denote the i-th vector of the standard basis of \mathbb{F}^{n} over \mathbb{F}, that is, the column vector with n coordinates such that there is 1 in the i-th position and zeros elsewhere.

The problem of length computation for the matrix algebra $M_{n}(\mathbb{F})$ as a function of the size of matrices was posed in [13] and is still open. The only known upper bounds are due to Paz and Pappacena:

https://daneshyari.com/en/article/8897957

Download Persian Version:

https://daneshyari.com/article/8897957

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: guterman@list.ru (A. Guterman), thomas.laffey@ucd.ie (T. Laffey), ov__markova@mail.ru (O. Markova), helena.smigoc@ucd.ie (H. Šmigoc).
 ${ }^{1}$ The work of the first and the third authors is supported by Russian Scientific Foundation grant 17-11-01124.

