Corrigendum

Corrigendum to "Solvability and uniqueness criteria for generalized Sylvester-type equations" is

Fernando De Terán ${ }^{\text {a,* }}$, Bruno Iannazzo ${ }^{\text {b }}$, Federico Poloni ${ }^{\text {c }}$,
Leonardo Robol ${ }^{\text {d }}$
a Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
b Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy
c Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
d Institute of Information Science and Technologies "A. Faedo", ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

A R T I C L E I N F O

Article history:

Received 20 October 2017
Accepted 20 October 2017
Available online xxxx
Submitted by R. Brualdi

MSC:

15A22
15A24
65F15

Abstract

We provide an amended version of Corollaries 7 and 9 in [De Terán, Iannazzo, Poloni, Robol, "Solvability and uniqueness criteria for generalized Sylvester-type equations"]. These results characterize the unique solvability of the matrix equation $A X B+C X^{\star} D=E$ (where the coefficients need not be square) in terms of an equivalent condition on the spectrum of certain matrix pencils of the same size as one of its coefficients.

© 2017 Elsevier Inc. All rights reserved.

Keywords:
Sylvester equation
Eigenvalues

DOI of original article: https://doi.org/10.1016/j.laa.2017.07.010.
*) This work was partially supported by the Ministerio de Economía y Competitividad of Spain through grants MTM2015-68805-REDT, and MTM2015-65798-P (F. De Terán), and by an INdAM/GNCS Research Project 2016 (B. Iannazzo, F. Poloni, and L. Robol). Part of this work was done during a visit of the first author to the Università di Perugia as a Visiting Researcher.

* Corresponding author.

E-mail addresses: fteran@math.uc3m.es (F. De Terán), bruno.iannazzo@dmi.unipg.it (B. Iannazzo), federico.poloni@unipi.it (F. Poloni), leonardo.robol@isti.cnr.it (L. Robol).
https://doi.org/10.1016/j.laa.2017.10.018
0024-3795/© 2017 Elsevier Inc. All rights reserved.

1. Setting

We consider the generalized \star-Sylvester equation

$$
\begin{equation*}
A X B+C X^{\star} D=E \tag{1}
\end{equation*}
$$

for the unknown $X \in \mathbb{C}^{m \times n}$, with \star being either the transpose (T) or the conjugate transpose ($*$), and $A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}$.

We follow the same notation and definitions as in [2], but we need to introduce some further notions. In particular, we deal with certain matrices and matrix pencils that always have $|m-n|$ zero or infinite eigenvalues which are dimension-induced, that is, they are present simply because of the sizes of the coefficient matrices they are constructed from (see [4]). Hence we define a variant of the spectrum in which these eigenvalues are omitted:

$$
\begin{gathered}
\widehat{\Lambda}(\mathcal{P}):=\left\{\begin{array}{cl}
\Lambda(\mathcal{P}), & \text { if } m_{\infty}(\mathcal{P})>|m-n|, \\
\Lambda(\mathcal{P}) \backslash\{\infty\}, & \text { if } m_{\infty}(\mathcal{P})=|m-n|,
\end{array}\right. \\
\widetilde{\Lambda}(\mathcal{P}):=\left\{\begin{array}{cl}
\Lambda(\mathcal{P}), & \text { if } m_{0}(\mathcal{P})>|m-n|, \\
\Lambda(\mathcal{P}) \backslash\{0\}, & \text { if } m_{0}(\mathcal{P})=|m-n|
\end{array}\right.
\end{gathered}
$$

Following [4], we refer to the eigenvalues in either $\widehat{\Lambda}(\mathcal{P})$ or $\widetilde{\Lambda}(\mathcal{P})$ as core eigenvalues. If M is a square matrix, we use the notation $\widetilde{\Lambda}(M)$ to denote $\widetilde{\Lambda}(\lambda I-M)$. We recall that the pencil $\mathcal{P}(\lambda)$ has an infinite eigenvalue if and only if its reversal, rev $\mathcal{P}(\lambda)$, has the zero eigenvalue. The multiplicity of the infinite eigenvalue in $\mathcal{P}(\lambda)$ is the multiplicity of the zero eigenvalue in $\operatorname{rev} \mathcal{P}(\lambda)$, thus

$$
\begin{equation*}
\widetilde{\Lambda}(\operatorname{rev} \mathcal{P})=\left\{\lambda^{-1}: \lambda \in \widehat{\Lambda}(\mathcal{P})\right\} \tag{2}
\end{equation*}
$$

with $0^{-1}=\infty$ and $\infty^{-1}=0$.
By λ^{\star} we denote either λ, if $\star=\top$, or $\bar{\lambda}$, if $\star=*$, with $\bar{\lambda}$ being the complex conjugate of λ.

2. Amended corollaries

In [2], we provided several corollaries that convert the conditions in [2, Theorem 3] into conditions on pencils and matrices of smaller size. Unfortunately, some issues with

[^0]
https://daneshyari.com/en/article/8897992

Download Persian Version:

https://daneshyari.com/article/8897992

Daneshyari.com

[^0]: Please cite this article in press as: F. De Terán et al., Corrigendum to "Solvability and uniqueness criteria for generalized Sylvester-type equations", Linear Algebra Appl. (2018),
 https://doi.org/10.1016/j.laa.2017.10.018

