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1. Introduction

In the problem of characterization of the feedback equivalence classes of the pairs
(A,[B1 Bj]) obtained from (A,[B1 Bsz]) by means of small additive perturbations
made on the matrix By when (A, By) is controllable, we have obtained an equivalence
relation suitable for the problem (see [2]), in such a way that if the structured pertur-
bation problem is solved for a pair it is also solved for any pair in its equivalence class.
That equivalence relation is called (n,my, ms)-equivalence. In that paper we obtained
a canonical form for the mentioned equivalence relation, which allowed us to solve the
perturbation problem in some particular cases.

In [3], taking into account that we can associate with each controllable pair a nonsin-
gular polynomial matrix, called polynomial matrix representation of the pair, we have
defined an equivalence relation in the set of nonsingular polynomial matrices, in such a
way that two pairs are (n,my, ms)-equivalent if and only if their corresponding polyno-
mial matrix representations are equivalent for this new relation. This equivalence relation
is called left (m1, mg)-Wiener—Hopf equivalence at infinity, because it is finer than the
left Wiener—Hopf equivalence at infinity. Moreover, we have found a reduced form for
this refined equivalence relation.

In this paper we obtain a canonical form for the left (2,1)-Wiener—Hopf equivalence
at infinity.

The organization of the paper is the following one: in Section 2 we give the main
notation, definitions and previous results; in Section 3 we present the reduced form for
the left (mq, mo)-Wiener—Hopf equivalence at infinity relation and, in the particular case
when mo = 1, we obtain some conditions for the elements of the matrices which relate
two reduced forms; in Section 4 we obtain a canonical form for this equivalence relation
in the particular case when m; = 2 and mo = 1.

2. Notation, definitions and previous results

A partition is a finite or infinite sequence of nonnegative integers almost all zero,
a = (a1, as,...), in nonincreasing order. The conjugate partition of a, @ = (a1, as,...), is
defined by ay, := Card{i : a; > k}. We define a Ub to be the partition whose components
are those of a and b arranged in nonincreasing order.

We will denote by I an arbitrary field, by F™*" the set of matrices of size m x n and
by Gl,,(F) the group of invertible matrices of size n x n.

For a given matrix pair (A, B) € F"*" x F**™ (C(A, B) = [B AB ... A”le]
denotes the controllability matriz of (A, B). This pair is said to be completely controllable
if rank(C(A, B)) = n.
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