Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs

Rosário Fernandes ${ }^{\mathrm{a}, *, 1}$, Maria Aguieiras A. de Freitas ${ }^{\mathrm{b}, 2}$,
Celso M. da Silva Jr. ${ }^{\text {c }}$, Renata R. Del-Vecchio ${ }^{\text {d,3 }}$
${ }^{\text {a }}$ CMA and Departamento de Matemática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
${ }^{\text {b }}$ Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
${ }^{\text {c }}$ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brasil
${ }^{\text {d }}$ Instituto de Matemática, Universidade Federal Fluminense, Niterói, Brasil

A R T I C L E I N F O

Article history:

Received 2 March 2017
Accepted 28 November 2017
Available online 5 December 2017
Submitted by B.L. Shader

MSC:

05 C 12
05C50
15A18
Keywords:
Distance Laplacian matrix

Abstract

In this work, the graphs of order n having the second distance Laplacian eigenvalue of multiplicity $n-2$ are determined. Besides that, this result also characterizes the graphs where the multiplicity of some distance Laplacian eigenvalue is equal to $n-2$. In addition, all connected graphs of order n where the largest eigenvalue of the distance Laplacian matrix has multiplicity $n-3$ are determined. Finally, we determine some graphs with a distance Laplacian eigenvalue having multiplicity $n-3$.

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $G=(V, E)$ be a connected graph of order n and let $d_{i, j}$ be the distance (the length of a shortest path) between vertices v_{i} and v_{j} of G. The distance matrix of G, denoted by $\mathcal{D}(G)$, is the $n \times n$ matrix whose (i, j)-entry is equal to $d_{i, j}$, for $i, j=1,2, \ldots, n$. For $1 \leq i \leq n$, the sum of the distances from v_{i} to all other vertices in G is known as the transmission of the vertex v_{i} and is denoted by $\operatorname{Tr}\left(v_{i}\right)$, [3]. Let $\operatorname{Tr}(G)$ be the diagonal matrix of order n whose (i, i)-entry is equal to $\operatorname{Tr}\left(v_{i}\right)$. This matrix is known as the transmission matrix of G. The Laplacian for the distance matrix of $G, \mathcal{D}^{L}(G)$, was introduced by M. Aouchiche and P. Hansen in [1] and it is the difference between the transmission matrix and the distance matrix, that is, $\mathcal{D}^{L}(G)=\operatorname{Tr}(G)-\mathcal{D}(G)$. This matrix is known as the distance Laplacian matrix and it is a positive semidefinite matrix. Let $\left(\partial_{1}^{L}(G), \partial_{2}^{L}(G), \ldots, \partial_{n}^{L}(G)=0\right)$ be the distance Laplacian spectrum of the connected graph G, denoted by $\mathcal{D}^{L}(G)$-spectrum, where $\partial_{1}^{L}(G) \geq \partial_{2}^{L}(G) \geq \ldots \geq \partial_{n}^{L}(G)=0$. The multiplicity of the eigenvalue $\partial_{i}^{L}(G), i=1 \ldots, n$, is denoted by $m\left(\partial_{i}^{L}(G)\right)$. Recall that $\partial_{n-1}^{L}(G)=n$ if and only if \bar{G}, the complement of G, is disconnected. Moreover, $\partial_{n-1}^{L}(G) \geq n$ and the multiplicity of n as an eigenvalue of $\mathcal{D}^{L}(G)$ is one less than the number of components of \bar{G}, [1]. More results about the distance Laplacian matrix can be found in $[2,5,7,8]$.

In [2], M. Aouchiche and P. Hansen proposed some conjectures involving the distance Laplacian matrix. Among them, C. da Silva Jr. et al. [5] solved one in the following theorem:

Theorem 1.1 ([5]). If G is a graph on $n \geq 3$ vertices and $G \not \equiv K_{n}$, then $m\left(\partial_{1}^{L}(G)\right) \leq n-2$ with equality if and only if G is the star S_{n} or the complete bipartite graph $K_{p, p}$, if $n=2 p$.

In Section 3 we characterize the graphs such that the second distance Laplacian eigenvalue has multiplicity equal to $n-2$. This result also completely characterizes the graphs where the multiplicity of some distance Laplacian eigenvalue is equal to $n-2$, extending Theorem 1.1.

In Section 4 we answer the question posed in [5] about which graphs G on n vertices have $m\left(\partial_{1}^{L}(G)\right)=n-3$. For this, we also prove that $G \cong K_{n-2} \vee \overline{K_{2}}$, the complete graph minus an edge, is determined by the multiplicities of its Laplacian eigenvalues. Finishing this section, we investigate the graphs for which another distance Laplacian eigenvalue has multiplicity $n-3$, addressing the cases where n is an eigenvalue for this matrix.

2. Preliminaries

In what following, $G=(V, E)$, or just G, denotes a graph with n vertices and \bar{G} denotes its complement. The diameter of a connected graph G is denoted by $\operatorname{diam}(G)$.

https://daneshyari.com/en/article/8897996

Download Persian Version:

https://daneshyari.com/article/8897996

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mrff@fct.unl.pt (R. Fernandes), maguieiras@im.ufrj.br (M.A.A. de Freitas), celso.silva@cefet-rj.br (C.M. da Silva), renata@vm.uff.br (R.R. Del-Vecchio).
 ${ }^{1}$ This work was partially supported by the Fundação para a Ciência e a Tecnologia through the project UID/MAT/00297/2013.
 ${ }^{2}$ This work was partially supported by National Counsel of Technological and Scientific Development (CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro).
 ${ }^{3}$ This work was partially supported by National Counsel of Technological and Scientific Development (CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico).

