

Contents lists available at ScienceDirect

Linear Algebra and its Applications

LINEAR
ALGEBRA
and Its
Applications

www.elsevier.com/locate/laa

On quaternionic numerical ranges with respect to nonstandard involutions

Gholamreza Aghamollaei*, Meysam Rahjoo

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

ARTICLE INFO

Article history: Received 14 August 2017 Accepted 14 November 2017 Available online 21 November 2017 Submitted by C.-K. Li

MSC: 15A60 15B33 15A18

Keywords: Quaternion matrices Numerical range Nonstandard involution

ABSTRACT

Let ϕ be a nonstandard involution on the set of all quaternions, and the quaternion α be such that $\phi(\alpha) = \alpha$. The notion of numerical range of an $n \times n$ quaternion matrix A with respect to ϕ was introduced by Leiba Rodman (2014) [8] as

$$W_{\phi}^{(\alpha)}(A)=\{x_{\phi}Ax\ :x\ {\rm is\ an}\ n\times 1\ {\rm quaternion\ vector\ and}$$

$$x_{\phi}x=\alpha\},$$

where for $x = [x_1 \cdots x_n]^T$, $x_{\phi} = [\phi(x_1) \cdots \phi(x_n)]$. In this paper, some algebraic and geometrical properties of $W_{\phi}^{(0)}(.)$ for every arbitrary quaternion matrix are investigated. Moreover, a description of this set is given for 2×2 quaternion matrices, and $W_{\phi}^{(0)}(.)$ is characterized for ϕ -hermitian and ϕ -skewhermitian quaternion matrices. To illustrate the main results, some examples are also given.

© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: aghamollaei@uk.ac.ir, aghamollaei1976@gmail.com (G. Aghamollaei), rahjoo_meysam@yahoo.com (M. Rahjoo).

^{*} Corresponding author.

1. Introduction

Let \mathbb{H} be the four-dimensional algebra of all quaternion numbers over the field of real numbers \mathbb{R} . Quaternions have useful applications in control systems, quantum mechanics, computer graphics, algebra, analysis and geometry; see [1,4,6,7,11,12]. An ordered triple (q_1, q_2, q_3) of quaternions is said to be a units triple if:

$$q_1^2=q_2^2=q_3^2=-1,$$
 $q_1q_2=q_3=-q_2q_1, \quad q_2q_3=q_1=-q_3q_2, \quad q_3q_1=q_2=-q_1q_3, \quad \text{and}$
$$1q=q1=q \quad \text{for all } q\in\{q_1,q_2,q_3\}.$$

For example, the standard triple (i, j, k) is a units triple of quaternions. It is known, e.g., see [8, Proposition 2.4.2], that an ordered triple (q_1, q_2, q_3) of quaternions is a units triple iff there exists a 3×3 real orthogonal matrix $P = [p_{\alpha,\beta}]_{\alpha,\beta=1}^3$ such that det(P) = 1 and $q_{\alpha} = p_{1,\alpha}i + p_{2,\alpha}j + p_{3,\alpha}k$, where $\alpha = 1, 2, 3$. In particular, for every units triple (q_1, q_2, q_3) of quaternions, $\{1, q_1, q_2, q_3\}$ is a basis of \mathbb{H} . So, every $x \in \mathbb{H}$ can be uniquely written as $x = x_0 + x_1q_1 + x_2q_2 + x_3q_3$, where $x_0, x_1, x_2, x_3 \in \mathbb{R}$. It is easy to see that $|x| = \sqrt{x_0^2 + x_1^2 + x_2^2 + x_3^2}$.

A map $\phi : \mathbb{H} \longrightarrow \mathbb{H}$ is called an involution if $\phi(x+y) = \phi(x) + \phi(y)$, $\phi(xy) = \phi(y)\phi(x)$ and $\phi(\phi(x)) = x$ for all $x, y \in \mathbb{H}$. It is clear that ϕ is one-to-one and onto. Moreover, the 4×4 matrix representing of ϕ , with respect to the standard basis of \mathbb{H} , is diag(1,T), where T = -I or T is a 3×3 real orthogonal symmetric matrix with eigenvalues 1, 1, -1. If T = -I, then ϕ is the standard conjugation, and for the latter case, ϕ is called a nonstandard involution; see [8, Definition 2.4.5]. The set of all quaternions that are invariant by ϕ is denoted by $Inv(\phi)$; i.e.,

$$Inv(\phi) = \{x \in \mathbb{H} : \phi(x) = x\}.$$

Proposition 1.1. ([8, Theorem 2.5.1]) If ϕ is a nonstandard involution and $0 \neq \alpha \in Inv(\phi)$, then for every $\lambda \in Inv(\phi)$, there exists $\beta \in Inv(\phi)$ such that $\phi(\beta)\alpha\beta = \lambda$.

Let \mathbb{H}^n be the set of all *n*-column vectors with entries in \mathbb{H} , and $\mathbb{M}_n(\mathbb{H})$ be the algebra of all $n \times n$ quaternion matrices. Also, for an $n \times m$ quaternion matrix B, the $m \times n$ matrix B_{ϕ} is obtained by applying ϕ entrywise to the transposed B^T . Leiba Rodman in his book [8], for a quaternion matrix $A \in \mathbb{M}_n(\mathbb{H})$ and $\alpha \in Inv(\phi)$, introduced the notion of numerical range of A with respect to ϕ as:

$$W_{\phi}^{(\alpha)}(A) = \{ x_{\phi} A x : x \in \mathbb{H}^n, \ x_{\phi} x = \alpha \}.$$
 (1)

We know that $0 \in Inv(\phi)$. In this paper, we are going to study some algebraic and geometrical properties of $W_{\phi}^{(0)}(A)$. For this, in Section 2, we state some preliminaries and essential properties of $W_{\phi}^{(0)}(A)$ which can be found in [8]. We investigate some

Download English Version:

https://daneshyari.com/en/article/8898011

Download Persian Version:

https://daneshyari.com/article/8898011

Daneshyari.com