Accepted Manuscript

Note on an upper bound for sum of the Laplacian eigenvalues of a graph

Xiaodan Chen, Jingjian Li, Yingmei Fan

PII:	S0024-3795(17)30668-7
DOI:	https://doi.org/10.1016/j.laa.2017.12.006
Reference:	LAA 14407

To appear in: Linear Algebra and its Applications

Received date: 5 November 2017
Accepted date: 5 December 2017

Please cite this article in press as: X. Chen et al., Note on an upper bound for sum of the Laplacian eigenvalues of a graph, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2017.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Note on an upper bound for sum of the Laplacian eigenvalues of a graph

Xiaodan Chen, Jingjian Li, Yingmei Fan*
College of Mathematics and Information Science, Guangxi University, Nanning 530004, Guangxi, P.R. China

Abstract

For a simple graph G with n vertices and m edges having Laplacian eigenvalues $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)$, let $\mathcal{S}_{k}(G)$ be the sum of k largest Laplacian eigenvalues of G. In this note, we prove that if G is a connected graph of order $n \geq 2$ with m edges having clique number ω and vertex covering number τ, then

$$
\mathcal{S}_{k}(G) \leq k(\tau+1)+m-\frac{\omega(\omega-1)}{2}
$$

with equality if $k \leq \omega-1$ and G is the graph obtained by joining $n-\omega$ pendant vertices with one of the vertices in K_{ω}. Our work improves a recent work of Ganie et al.
Keywords: sum of Laplacian eigenvalues, upper bound, clique number, vertex covering number
2000 MSC: 05C50, 05C30

1. Introduction

We consider finite, undirected and simple graphs throughout this note. Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. We denote by $N_{G}\left(v_{i}\right)$ and $d_{G}\left(v_{i}\right)$ the neighborhood and the degree of vertex v_{i} in G, respectively. A vertex v_{i} is called isolated if $d_{G}\left(v_{i}\right)=0$,

[^0]
https://daneshyari.com/en/article/8898014

Download Persian Version:

https://daneshyari.com/article/8898014

Daneshyari.com

[^0]: *Corresponding author
 Email addresses: x.d.chen@live.cn (Xiaodan Chen), lijjhx@163.com (Jingjian Li), yingmeifan@126.com (Yingmei Fan)

