

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Maximizing the spectral radius of graphs with fixed minimum degree and edge connectivity

LINEAR ALGEBI and its

Applications

Wenjie Ning^{a,*}, Mei Lu^b, Kun Wang^c

^a College of Science, China University of Petroleum (East China),

Qingdao 266580, China

^c School of Mathematical Sciences, Anhui University, Hefei 230601, China

ARTICLE INFO

Article history: Received 21 June 2017 Accepted 20 November 2017 Available online 24 November 2017 Submitted by D. Stevanovic

MSC: 05C50 15A18

Keywords: Spectral radius Minimum degree Edge-connectivity Quotient matrix Maximally edge-connected graph

АВЅТ КАСТ

The spectral radius $\rho(G)$ of a graph G is the largest eigenvalue of the adjacency matrix A(G). Suppose a graph G_0 maximizes the spectral radius over the class of graphs of order n with fixed minimum degree δ and edge connectivity $\kappa' < \delta$. In this paper, we mainly show that $G_0 \cong B_{n,\delta}^{\kappa'}$, where $B_{n,\delta}^{\kappa'}$ is obtained by adding κ' edges between $K_{\delta+1}$ and $K_{n-\delta-1}$. A property of the adjacency matrix of G_0 is also obtained. Moreover, graphs that maximize $\rho(G)$ over the class of graphs with minimum degree δ and edge-connectivity κ' , for $\kappa' = 0, 1, 2, 3, \delta$, are completely determined.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: ningwenjie-0501@163.com (W. Ning), mlu@math.tsinghua.edu.cn (M. Lu), wangkun26@163.com (K. Wang).

^b Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

1. Introduction

In this paper, a graph means a simple undirected graph. Let G = (V, E) be a graph of order n with vertex set $V = \{v_1, v_2, \ldots, v_n\}$. Let $N_G(v)$ or for short N(v) be the set of vertices adjacent to v in G and $N[v] = N(v) \cup \{v\}$. The *degree* of v in G, denoted by $d_G(v)$, is equal to $|N_G(v)|$. Denote by $\delta(G)$ or for short δ the minimum degree of vertices in G. If A and B are two disjoint subsets of V, then $[A, B] := \{uv \in E(G) | u \in A, v \in B\}$. For a subset S of V, let $N(S) = \bigcup_{v \in S} N(v)$ and denote by G[S] the subgraph of G induced by S. G is *connected* if each pair of vertices is joined by a path. Suppose $U \subseteq E$. Then U is an *edge cut* of G if G - U is disconnected. The *edge connectivity* of G, denoted by $\kappa'(G)$ or κ' , is the minimum cardinality of an edge cut of G. Obviously, we have $\kappa' \leq \delta$. If $\kappa' = \delta$, then G is said to be *maximally edge-connected*.

The adjacency matrix of a graph G is the matrix $A(G) = (a_{ij})$, where a_{ij} equals 1 if v_i, v_j are adjacent and equals 0 otherwise. It is obvious that A(G) is a real symmetric matrix. Thus its eigenvalues are real numbers. The largest eigenvalue of A(G), denoted by $\rho(G)$, is called the spectral radius of G. Suppose G is connected. Then A(G) is a nonnegative irreducible matrix. Thus, by Perron–Frobenius theorem, we have $\rho(G) > 0$ and there exists a unique positive unit vector x called Perron vector such that $A(G)x = \rho(G)x$. Moreover, we have $\delta \leq \rho(G) \leq \Delta$, and the equality holds in either of these inequalities if and only if G is regular. Given a partition $\pi = (V_1, V_2, \ldots, V_r)$ of V(G), the quotient matrix $A_{\pi}(G)$ of G with respect to π is a $r \times r$ matrix (b_{ij}) such that b_{ij} is the average number of neighbors in V_j of the vertices in V_i for $1 \leq i, j \leq r$. The partition π is said to be equitable (or regular) if the number of neighbors in V_j of a vertex v in V_i is a constant, independent of v.

Recently there is a lot of work on the spectral radius of a graph (see, for example [2–4,7, 8,14]), especially on maximizing the spectral radius among a given set of graphs. Berman and Zhang [1] characterized the unique graph maximizing the spectral radius among graphs with fixed number of cut vertices. Liu et al. [11] found the graph maximizing the spectral radius among graphs with fixed number of cut edges. Let K(p,q) ($p \ge q \ge 0$) be a graph obtained from K_p by adding a vertex together with edges joining this vertex to q vertices of K_p . Ye et al. [13] proved that among all graphs with fixed order n and given vertex or edge connectivity r ($1 \le r \le n-2$), the graph K(n-1,r) has maximum spectral radius. It is still of interest to investigate the problem of maximizing the spectral radius of graphs with fixed minimum degree and edge connectivity.

For $n \geq 2, \ \delta \geq \kappa' \geq 0$, let $\mathcal{G}_{n,\delta}^{\kappa'} = \{G \mid G \text{ is a graph of order } n \text{ with minimum degree } \delta$ and edge-connectivity $\kappa'\}$. Note that $\mathcal{G}_{n,\delta}^0$ consists of disconnected graphs of order n and minimum degree δ . Ye et al. [13] proved that $K_{n-1} \cup K_1$ is the unique graph with maximum spectral radius among all graphs of order n and edge connectivity $\kappa' = 0$. Since $\delta(K_{n-1} \cup K_1) = 0$, we obtain that $K_{n-1} \cup K_1$ is also the unique one with maximum spectral radius among $\mathcal{G}_{n,0}^0$. So we omit this case $\delta = \kappa' = 0$ in the next sections. For $n \geq 2\delta + 2, \delta > \kappa' \geq 0$, let $B_{n,\delta}^{\kappa'}$ be obtained by adding κ' edges between $K_{\delta+1}$ and $K_{n-\delta-1}$. Note that $B_{n,\delta}^0 = K_{\delta+1} \cup K_{n-\delta-1}$. Obviously, $B_{n,\delta}^{\kappa'} \in \mathcal{G}_{n,\delta}^{\kappa'}$.

Download English Version:

https://daneshyari.com/en/article/8898026

Download Persian Version:

https://daneshyari.com/article/8898026

Daneshyari.com