

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Localization of eigenvalues of doubly cyclic matrices

LINEAR

lications

Charles E. Baker^{*}, Boris S. Mityagin

The Ohio State University, Columbus, OH, USA

ARTICLE INFO

Article history: Received 13 June 2017 Accepted 17 November 2017 Available online xxxx Submitted by R. Brualdi

MSC: primary 26C10 secondary 15A42

Keywords: Doubly cyclic matrices Localization of eigenvalues Zeroes of polynomials

ABSTRACT

For fixed positive α and β , and a fixed integer $n, n \geq 2$, we consider the family of matrices $diag(a_1, a_2, \ldots, a_n)$ – $\operatorname{diag}(b_1, b_2, \ldots, b_n)\Sigma_*$, where all the a_k 's and b_k 's are positive, the geometric mean of the a_k 's and b_k 's must be α and β , respectively, and Σ_* denotes the permutation matrix corresponding to the cycle $(1, 2, \ldots, n)$.

C. Johnson, Z. Price, and I. Spitkovsky conjectured that in this family, the number of eigenvalues in the left halfplane is maximized by $\alpha I - \beta \Sigma_*$; we prove this conjecture. Moreover, the complete range of possibilities for the number of eigenvalues in the left half-plane is demonstrated: if $\alpha < \beta$, then any odd number between 1 and the maximum, inclusive, is attainable.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For $n \in \mathbb{N}$, $n \geq 2$, we consider matrices $X \in M_n(\mathbb{R})$ of a particular form. Defining $\mathbb{R}_{>0} = (0,\infty)$, and fixing vectors $\mathbf{a} = (a_1,\ldots,a_n)$ and $\mathbf{b} = (b_1,\ldots,b_n)$ in $(\mathbb{R}_{>0})^n$, we study the matrix

* Corresponding author.

https://doi.org/10.1016/j.laa.2017.11.016

E-mail addresses: baker.1656@osu.edu (C.E. Baker), mityagin.1@osu.edu, boris.mityagin@gmail.com (B.S. Mityagin).

^{0024-3795/© 2017} Elsevier Inc. All rights reserved.

$$X = \begin{pmatrix} a_1 & -b_1 & 0 & \cdots & 0 \\ 0 & a_2 & -b_2 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & \cdots & a_{n-1} & -b_{n-1} \\ -b_n & 0 & \cdots & 0 & a_n \end{pmatrix}.$$
 (1.1)

Since

$$\det X = \alpha^n - \beta^n, \quad \alpha \equiv \left(\prod_{k=1}^n a_k\right)^{1/n}, \quad \beta \equiv \left(\prod_{k=1}^n b_k\right)^{1/n}$$
(1.2)

the geometric means of the a_k 's and b_k 's play a key role. We let $DC(\alpha, \beta)$ denote the set of matrices of the form (1.1) with given geometric mean α for the a_k 's and β for the b_k 's.

Inspired by the occurrence of such matrices in the previous paper [1], C. Johnson, Z. Price, and I. Spitkovsky, in [2], consider the number of eigenvalues of such a matrix in the left half-plane. In particular, they note that for several cases (when $n \leq 4$, or $\cos\left(\frac{2\pi}{n}\right) < \frac{\alpha}{\beta} < 1$), the number of eigenvalues in the left-half-plane is the same as that for $\alpha I - \beta \Sigma_*$. Here, I is the identity $n \times n$ matrix and

$$\Sigma_* = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$
(1.3)

is the relevant permutation $n \times n$ matrix.

Numerical evidence presented in [2] suggests that in general, the number of eigenvalues in the left half-plane for any matrix in $DC(\alpha, \beta)$ is bounded above by the corresponding value for $\alpha I - \beta \Sigma_*$. In this paper, we prove this conjecture.

Theorem 1.1. Fix $n \in \mathbb{N}$, $n \geq 2$. Fix $\alpha, \beta \in \mathbb{R}_{>0}$. Let $X \in DC(\alpha, \beta)$. Then the number of eigenvalues of X with negative real part does not exceed the number of eigenvalues of $\alpha I - \beta \Sigma_*$ with negative real part, and setting $X = \alpha I - \beta \Sigma_* \in DC(\alpha, \beta)$ allows us to attain this upper bound as a maximum among all elements of $DC(\alpha, \beta)$.

See also Remark 2.2 for an extension of the claim of this theorem.

Conjugating with nonsingular matrices preserves the spectrum. We conjugate X with the diagonal matrix

Download English Version:

https://daneshyari.com/en/article/8898030

Download Persian Version:

https://daneshyari.com/article/8898030

Daneshyari.com