Localization of eigenvalues of doubly cyclic matrices

Charles E. Baker *, Boris S. Mityagin
The Ohio State University, Columbus, OH, USA

A R T I C L E I N F O

Article history:

Received 13 June 2017
Accepted 17 November 2017
Available online xxxx
Submitted by R. Brualdi

MSC:

primary 26 C 10
secondary 15 A 42

Keywords:
Doubly cyclic matrices
Localization of eigenvalues
Zeroes of polynomials

A B S T R A C T

For fixed positive α and β, and a fixed integer $n, n \geq 2$, we consider the family of matrices $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)-$ $\operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \Sigma_{*}$, where all the a_{k} 's and b_{k} 's are positive, the geometric mean of the a_{k} 's and b_{k} 's must be α and β, respectively, and Σ_{*} denotes the permutation matrix corresponding to the cycle $(1,2, \ldots, n)$.
C. Johnson, Z. Price, and I. Spitkovsky conjectured that in this family, the number of eigenvalues in the left halfplane is maximized by $\alpha I-\beta \Sigma_{*}$; we prove this conjecture. Moreover, the complete range of possibilities for the number of eigenvalues in the left half-plane is demonstrated: if $\alpha<\beta$, then any odd number between 1 and the maximum, inclusive, is attainable.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For $n \in \mathbb{N}, n \geq 2$, we consider matrices $X \in M_{n}(\mathbb{R})$ of a particular form. Defining $\mathbb{R}_{>0}=(0, \infty)$, and fixing vectors $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ in $\left(\mathbb{R}_{>0}\right)^{n}$, we study the matrix

[^0]\[

X=\left($$
\begin{array}{ccccc}
a_{1} & -b_{1} & 0 & \cdots & 0 \tag{1.1}\\
0 & a_{2} & -b_{2} & \cdots & 0 \\
\vdots & & \ddots & \ddots & \\
0 & \cdots & \cdots & a_{n-1} & -b_{n-1} \\
-b_{n} & 0 & \cdots & 0 & a_{n}
\end{array}
$$\right)
\]

Since

$$
\begin{equation*}
\operatorname{det} X=\alpha^{n}-\beta^{n}, \quad \alpha \equiv\left(\prod_{k=1}^{n} a_{k}\right)^{1 / n}, \quad \beta \equiv\left(\prod_{k=1}^{n} b_{k}\right)^{1 / n} \tag{1.2}
\end{equation*}
$$

the geometric means of the a_{k} 's and b_{k} 's play a key role. We let $D C(\alpha, \beta)$ denote the set of matrices of the form (1.1) with given geometric mean α for the a_{k} 's and β for the b_{k} 's.

Inspired by the occurrence of such matrices in the previous paper [1], C. Johnson, Z. Price, and I. Spitkovsky, in [2], consider the number of eigenvalues of such a matrix in the left half-plane. In particular, they note that for several cases (when $n \leq 4$, or $\left.\cos \left(\frac{2 \pi}{n}\right)<\frac{\alpha}{\beta}<1\right)$, the number of eigenvalues in the left-half-plane is the same as that for $\alpha I-\beta \Sigma_{*}$. Here, I is the identity $n \times n$ matrix and

$$
\Sigma_{*}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{1.3}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \\
0 & \cdots & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

is the relevant permutation $n \times n$ matrix.
Numerical evidence presented in [2] suggests that in general, the number of eigenvalues in the left half-plane for any matrix in $D C(\alpha, \beta)$ is bounded above by the corresponding value for $\alpha I-\beta \Sigma_{*}$. In this paper, we prove this conjecture.

Theorem 1.1. Fix $n \in \mathbb{N}$, $n \geq 2$. Fix $\alpha, \beta \in \mathbb{R}_{>0}$. Let $X \in D C(\alpha, \beta)$. Then the number of eigenvalues of X with negative real part does not exceed the number of eigenvalues of $\alpha I-\beta \Sigma_{*}$ with negative real part, and setting $X=\alpha I-\beta \Sigma_{*} \in D C(\alpha, \beta)$ allows us to attain this upper bound as a maximum among all elements of $D C(\alpha, \beta)$.

See also Remark 2.2 for an extension of the claim of this theorem.
Conjugating with nonsingular matrices preserves the spectrum. We conjugate X with the diagonal matrix

https://daneshyari.com/en/article/8898030

Download Persian Version:

https://daneshyari.com/article/8898030

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: baker.1656@osu.edu (C.E. Baker), mityagin.1@osu.edu, boris.mityagin@gmail.com (B.S. Mityagin).

