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WHEN DOES ANDO–HIAI INEQUALITY HOLD?

SHUHEI WADA

Abstract. Let α be in (0, 1) and r > 0 and #α stand for the
weighted operator geometric mean. We consider the following
statement:

A,B > 0, A#αB ≥ I ⇒ Ar#αB
r ≥ I.

Ando and Hiai show that if r ≥ 1, then this holds. In the present
paper, we first prove the converse of this result, namely, the above
statement holds only if r ≥ 1. We next show that for each non-
negative continuous function f on [0,∞) with f ≤ tr and f �= tr,
there exist A,B > 0 such that A#αB ≥ I and f(A)#αf(B) �≥ I.
We also try to find a characterization of a continuous function f
satisfying

A,B > 0, A#αB ≥ I ⇒ f(A)#αf(B) ≥ I.

1. Introduction

LetH be a Hilbert space with an inner product 〈· | ·〉 and let B(H) be
the set of bounded linear operators on H. A bounded linear operator
A is said to be positive (denoted by A ≥ 0) if 〈Ax | x〉 ≥ 0 for all
x ∈ H. If a positive operator A is invertible, we denote by A > 0. The
set of positive operators on H is denoted by B(H)+.
A continuous real function f from [0,∞) is said to be operator mono-

tone on [0,∞) if for two positive operators A and B, the inequality
A ≥ B implies f(A) ≥ f(B). It is known that a non-negative operator
monotone function f has the following property: for every A,B ≥ 0,
f(A+B

2
) ≥ 1

2
f(A)+ 1

2
f(B). Such a function is referred to as an operator

concave function. A real function f , such that −f is operator concave,
is called operator convex. It is known that every non-constant non-
negative operator convex function f on [0,∞) with f(0) = 0 can be
written as f(t) = th(t) for some operator monotone function h, so the

adjoint of f , denoted by f ∗(t)
(
:= 1

f( 1
t
)

)
is also operator convex [2].

2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A64.
Key words and phrases. operator mean, Ando–Hiai inequality, operator

monotone.
1



Download English Version:

https://daneshyari.com/en/article/8898035

Download Persian Version:

https://daneshyari.com/article/8898035

Daneshyari.com

https://daneshyari.com/en/article/8898035
https://daneshyari.com/article/8898035
https://daneshyari.com

